BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

483 related articles for article (PubMed ID: 10917537)

  • 1. Beta-helix structure and ice-binding properties of a hyperactive antifreeze protein from an insect.
    Graether SP; Kuiper MJ; Gagné SM; Walker VK; Jia Z; Sykes BD; Davies PL
    Nature; 2000 Jul; 406(6793):325-8. PubMed ID: 10917537
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mimicry of ice structure by surface hydroxyls and water of a beta-helix antifreeze protein.
    Liou YC; Tocilj A; Davies PL; Jia Z
    Nature; 2000 Jul; 406(6793):322-4. PubMed ID: 10917536
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure-function relationship in the globular type III antifreeze protein: identification of a cluster of surface residues required for binding to ice.
    Chao H; Sönnichsen FD; DeLuca CI; Sykes BD; Davies PL
    Protein Sci; 1994 Oct; 3(10):1760-9. PubMed ID: 7849594
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The antifreeze potential of the spruce budworm thermal hysteresis protein.
    Tyshenko MG; Doucet D; Davies PL; Walker VK
    Nat Biotechnol; 1997 Sep; 15(9):887-90. PubMed ID: 9306405
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural basis for the binding of a globular antifreeze protein to ice.
    Jia Z; DeLuca CI; Chao H; Davies PL
    Nature; 1996 Nov; 384(6606):285-8. PubMed ID: 8918883
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Ca2+-dependent bacterial antifreeze protein domain has a novel beta-helical ice-binding fold.
    Garnham CP; Gilbert JA; Hartman CP; Campbell RL; Laybourn-Parry J; Davies PL
    Biochem J; 2008 Apr; 411(1):171-80. PubMed ID: 18095937
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular recognition and binding of thermal hysteresis proteins to ice.
    Madura JD; Baran K; Wierzbicki A
    J Mol Recognit; 2000; 13(2):101-13. PubMed ID: 10822254
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The ice-binding site of Atlantic herring antifreeze protein corresponds to the carbohydrate-binding site of C-type lectins.
    Ewart KV; Li Z; Yang DS; Fletcher GL; Hew CL
    Biochemistry; 1998 Mar; 37(12):4080-5. PubMed ID: 9521729
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hyperactive antifreeze protein from fish contains multiple ice-binding sites.
    Graham LA; Marshall CB; Lin FH; Campbell RL; Davies PL
    Biochemistry; 2008 Feb; 47(7):2051-63. PubMed ID: 18225917
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Partitioning of fish and insect antifreeze proteins into ice suggests they bind with comparable affinity.
    Marshall CB; Tomczak MM; Gauthier SY; Kuiper MJ; Lankin C; Walker VK; Davies PL
    Biochemistry; 2004 Jan; 43(1):148-54. PubMed ID: 14705940
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The basis for hyperactivity of antifreeze proteins.
    Scotter AJ; Marshall CB; Graham LA; Gilbert JA; Garnham CP; Davies PL
    Cryobiology; 2006 Oct; 53(2):229-39. PubMed ID: 16887111
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural basis for the superior activity of the large isoform of snow flea antifreeze protein.
    Mok YF; Lin FH; Graham LA; Celik Y; Braslavsky I; Davies PL
    Biochemistry; 2010 Mar; 49(11):2593-603. PubMed ID: 20158269
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effects of steric mutations on the structure of type III antifreeze protein and its interaction with ice.
    DeLuca CI; Davies PL; Ye Q; Jia Z
    J Mol Biol; 1998 Jan; 275(3):515-25. PubMed ID: 9466928
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Antifreeze protein from freeze-tolerant grass has a beta-roll fold with an irregularly structured ice-binding site.
    Middleton AJ; Marshall CB; Faucher F; Bar-Dolev M; Braslavsky I; Campbell RL; Walker VK; Davies PL
    J Mol Biol; 2012 Mar; 416(5):713-24. PubMed ID: 22306740
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ice surface reconstruction as antifreeze protein-induced morphological modification mechanism.
    Strom CS; Liu XY; Jia Z
    J Am Chem Soc; 2005 Jan; 127(1):428-40. PubMed ID: 15631494
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure and function of antifreeze proteins.
    Davies PL; Baardsnes J; Kuiper MJ; Walker VK
    Philos Trans R Soc Lond B Biol Sci; 2002 Jul; 357(1423):927-35. PubMed ID: 12171656
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ice-binding structure and mechanism of an antifreeze protein from winter flounder.
    Sicheri F; Yang DS
    Nature; 1995 Jun; 375(6530):427-31. PubMed ID: 7760940
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A two-dimensional adsorption kinetic model for thermal hysteresis activity in antifreeze proteins.
    Li QZ; Yeh Y; Liu JJ; Feeney RE; Krishnan VV
    J Chem Phys; 2006 May; 124(20):204702. PubMed ID: 16774359
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dual function of the hydration layer around an antifreeze protein revealed by atomistic molecular dynamics simulations.
    Nutt DR; Smith JC
    J Am Chem Soc; 2008 Oct; 130(39):13066-73. PubMed ID: 18774821
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A complex family of highly heterogeneous and internally repetitive hyperactive antifreeze proteins from the beetle Tenebrio molitor.
    Liou YC; Thibault P; Walker VK; Davies PL; Graham LA
    Biochemistry; 1999 Aug; 38(35):11415-24. PubMed ID: 10471292
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.