BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 10917614)

  • 1. Membrane flow, lipid sorting and cell polarity in HepG2 cells: role of a subapical compartment.
    Hoekstra D; Zegers MM; van Ijzendoorn SC
    Biochem Soc Trans; 1999 Aug; 27(4):422-8. PubMed ID: 10917614
    [No Abstract]   [Full Text] [Related]  

  • 2. Trans-Golgi network and subapical compartment of HepG2 cells display different properties in sorting and exiting of sphingolipids.
    Maier O; Hoekstra D
    J Biol Chem; 2003 Jan; 278(1):164-73. PubMed ID: 12407103
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Segregation of glucosylceramide and sphingomyelin occurs in the apical to basolateral transcytotic route in HepG2 cells.
    van IJzendoorn SC; Zegers MM; Kok JW; Hoekstra D
    J Cell Biol; 1997 Apr; 137(2):347-57. PubMed ID: 9128247
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sphingolipid transport to the apical plasma membrane domain in human hepatoma cells is controlled by PKC and PKA activity: a correlation with cell polarity in HepG2 cells.
    Zegers MM; Hoekstra D
    J Cell Biol; 1997 Jul; 138(2):307-21. PubMed ID: 9230073
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polarized sphingolipid transport from the subapical compartment: evidence for distinct sphingolipid domains.
    van IJzendoorn SC; Hoekstra D
    Mol Biol Cell; 1999 Oct; 10(10):3449-61. PubMed ID: 10512879
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polarized sphingolipid transport from the subapical compartment changes during cell polarity development.
    van IJzendoorn SC; Hoekstra D
    Mol Biol Cell; 2000 Mar; 11(3):1093-101. PubMed ID: 10712522
    [TBL] [Abstract][Full Text] [Related]  

  • 7. (Glyco)sphingolipids are sorted in sub-apical compartments in HepG2 cells: a role for non-Golgi-related intracellular sites in the polarized distribution of (glyco)sphingolipids.
    van IJzendoorn SC; Hoekstra D
    J Cell Biol; 1998 Aug; 142(3):683-96. PubMed ID: 9700158
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Calmodulin modulates hepatic membrane polarity by protein kinase C-sensitive steps in the basolateral endocytic pathway.
    Tyteca D; van Ijzendoorn SC; Hoekstra D
    Exp Cell Res; 2005 Nov; 310(2):293-302. PubMed ID: 16154564
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vesicular and nonvesicular transport of phosphatidylcholine in polarized HepG2 cells.
    Wüstner D; Mukherjee S; Maxfield FR; Müller P; Herrmann A
    Traffic; 2001 Apr; 2(4):277-96. PubMed ID: 11285138
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sorting of an internalized plasma membrane lipid between recycling and degradative pathways in normal and Niemann-Pick, type A fibroblasts.
    Koval M; Pagano RE
    J Cell Biol; 1990 Aug; 111(2):429-42. PubMed ID: 2380243
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fluorescent, short-chain C6-NBD-sphingomyelin, but not C6-NBD-glucosylceramide, is subject to extensive degradation in the plasma membrane: implications for signal transduction related to cell differentiation.
    Kok JW; Babia T; Klappe K; Hoekstra D
    Biochem J; 1995 Aug; 309 ( Pt 3)(Pt 3):905-12. PubMed ID: 7639709
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lipid metabolism in Chlamydia trachomatis-infected cells: directed trafficking of Golgi-derived sphingolipids to the chlamydial inclusion.
    Hackstadt T; Scidmore MA; Rockey DD
    Proc Natl Acad Sci U S A; 1995 May; 92(11):4877-81. PubMed ID: 7761416
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rapid transport of phospholipids across the plasma membrane of Leishmania infantum.
    Araújo-Santos JM; Gamarro F; Castanys S; Herrmann A; Pomorski T
    Biochem Biophys Res Commun; 2003 Jun; 306(1):250-5. PubMed ID: 12788096
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chlamydia trachomatis interrupts an exocytic pathway to acquire endogenously synthesized sphingomyelin in transit from the Golgi apparatus to the plasma membrane.
    Hackstadt T; Rockey DD; Heinzen RA; Scidmore MA
    EMBO J; 1996 Mar; 15(5):964-77. PubMed ID: 8605892
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sorting of membrane components from endosomes and subsequent recycling to the cell surface occurs by a bulk flow process.
    Mayor S; Presley JF; Maxfield FR
    J Cell Biol; 1993 Jun; 121(6):1257-69. PubMed ID: 8509447
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Golgi apparatus: insights from lipid biochemistry.
    Pagano RE
    Biochem Soc Trans; 1990 Jun; 18(3):361-6. PubMed ID: 2197129
    [No Abstract]   [Full Text] [Related]  

  • 17. Determination of plasma membrane fluidity with a fluorescent analogue of sphingomyelin by FRAP measurement using a standard confocal microscope.
    Klein C; Pillot T; Chambaz J; Drouet B
    Brain Res Brain Res Protoc; 2003 Mar; 11(1):46-51. PubMed ID: 12697262
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sphingolipid trafficking and protein sorting in epithelial cells.
    Aït Slimane T; Hoekstra D
    FEBS Lett; 2002 Oct; 529(1):54-9. PubMed ID: 12354613
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lipid metabolic changes caused by short-chain ceramides and the connection with apoptosis.
    Allan D
    Biochem J; 2000 Feb; 345 Pt 3(Pt 3):603-10. PubMed ID: 10642519
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assays for the biosynthesis of sphingomyelin and ceramide phosphoethanolamine.
    Nikolova-Karakashian M
    Methods Enzymol; 2000; 311():31-42. PubMed ID: 10563308
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.