These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 10917904)

  • 1. Different substrates and methane producing status affect short-chain fatty acid profiles produced by In vitro fermentation of human feces.
    Fernandes J; Rao AV; Wolever TM
    J Nutr; 2000 Aug; 130(8):1932-6. PubMed ID: 10917904
    [TBL] [Abstract][Full Text] [Related]  

  • 2. L-Rhamnose increases serum propionate in humans.
    Vogt JA; Pencharz PB; Wolever TM
    Am J Clin Nutr; 2004 Jul; 80(1):89-94. PubMed ID: 15213033
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vitro analysis of partially hydrolyzed guar gum fermentation differences between six individuals.
    Carlson J; Esparza J; Swan J; Taussig D; Combs J; Slavin J
    Food Funct; 2016 Apr; 7(4):1833-8. PubMed ID: 26862979
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interaction between methane-producing status and diet on serum acetate concentration in humans.
    Wolever TM; Robb PA; Ter Wal P; Spadafora PG
    J Nutr; 1993 Apr; 123(4):681-8. PubMed ID: 8463869
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fecal short-chain fatty acids in patients with diarrhea-predominant irritable bowel syndrome: in vitro studies of carbohydrate fermentation.
    Treem WR; Ahsan N; Kastoff G; Hyams JS
    J Pediatr Gastroenterol Nutr; 1996 Oct; 23(3):280-6. PubMed ID: 8890079
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Guar, but not psyllium, increases breath methane and serum acetate concentrations in human subjects.
    Wolever TM; ter Wal P; Spadafora P; Robb P
    Am J Clin Nutr; 1992 Mar; 55(3):719-22. PubMed ID: 1312763
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acarbose enhances human colonic butyrate production.
    Weaver GA; Tangel CT; Krause JA; Parfitt MM; Jenkins PL; Rader JM; Lewis BA; Miller TL; Wolin MJ
    J Nutr; 1997 May; 127(5):717-23. PubMed ID: 9164992
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fermentability of various fiber sources by human fecal bacteria in vitro.
    Titgemeyer EC; Bourquin LD; Fahey GC; Garleb KA
    Am J Clin Nutr; 1991 Jun; 53(6):1418-24. PubMed ID: 1852091
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular weight of guar gum affects short-chain fatty acid profile in model intestinal fermentation.
    Stewart ML; Slavin JL
    Mol Nutr Food Res; 2006 Oct; 50(10):971-6. PubMed ID: 16967518
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Increased serum cholesterol in healthy human methane producers is confounded by age.
    Fernandes J; Wolever TM; Rao AV
    J Nutr; 1998 Aug; 128(8):1349-54. PubMed ID: 9687555
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Small intestinal malabsorption and colonic fermentation of resistant starch and resistant peptides to short-chain fatty acids.
    Nordgaard I; Mortensen PB; Langkilde AM
    Nutrition; 1995; 11(2):129-37. PubMed ID: 7544175
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dietary guar gum alters colonic microbial fermentation in azoxymethane-treated rats.
    Weaver GA; Tangel C; Krause JA; Alpern HD; Jenkins PL; Parfitt MM; Stragand JJ
    J Nutr; 1996 Aug; 126(8):1979-91. PubMed ID: 8759370
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vitro fermentation characteristics of a mixture of Raftilose and guar gum by human faecal bacteria.
    Khan KM; Edwards CA
    Eur J Nutr; 2005 Sep; 44(6):371-6. PubMed ID: 15526209
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fermentation profiles of wheat dextrin, inulin and partially hydrolyzed guar gum using an in vitro digestion pretreatment and in vitro batch fermentation system model.
    Noack J; Timm D; Hospattankar A; Slavin J
    Nutrients; 2013 May; 5(5):1500-10. PubMed ID: 23645025
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vitro fermentation of various fiber and starch sources by pig fecal inocula.
    Wang JF; Zhu YH; Li DF; Wang Z; Jensen BB
    J Anim Sci; 2004 Sep; 82(9):2615-22. PubMed ID: 15446478
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vitro fermentation of lactulose-derived oligosaccharides by mixed fecal microbiota.
    Cardelle-Cobas A; Olano A; Corzo N; Villamiel M; Collins M; Kolida S; Rastall RA
    J Agric Food Chem; 2012 Feb; 60(8):2024-32. PubMed ID: 22292561
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of guar, pectin, psyllium, soy polysaccharide, and cellulose on breath hydrogen and methane in healthy subjects.
    Wolever TM; Robb PA
    Am J Gastroenterol; 1992 Mar; 87(3):305-10. PubMed ID: 1311494
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of sarsaponin on ruminal fermentation with particular reference to methane production in vitro.
    Lila ZA; Mohammed N; Kanda S; Kamada T; Itabashi H
    J Dairy Sci; 2003 Oct; 86(10):3330-6. PubMed ID: 14594252
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cornstarch fermentation by the colonic microbial community yields more butyrate than does cabbage fiber fermentation; cornstarch fermentation rates correlate negatively with methanogenesis.
    Weaver GA; Krause JA; Miller TL; Wolin MJ
    Am J Clin Nutr; 1992 Jan; 55(1):70-7. PubMed ID: 1309475
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Properties of hydrolyzed guar gum fermented in vitro with pig fecal inocula and its favorable impacts on microbiota.
    Fu X; Wei X; Xiao M; Han Z; Secundo F; Mou H
    Carbohydr Polym; 2020 Jun; 237():116116. PubMed ID: 32241396
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.