BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 10918138)

  • 1. Comparison of methods for thermolysin-catalyzed peptide synthesis including a novel more active catalyst.
    Ulijn RV; Erbeldinger M; Halling PJ
    Biotechnol Bioeng; 2000 Sep; 69(6):633-8. PubMed ID: 10918138
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Peptide synthesis in organic solvents with an immobilized enzyme.
    Nakanisi K; Nagayasu T
    Biomed Biochim Acta; 1991; 50(10-11):S50-4. PubMed ID: 1820060
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Solvent selection for solid-to-solid synthesis.
    Ulijn RV; De Martin L; Gardossi L; Janssen AE; Moore BD; Halling PJ
    Biotechnol Bioeng; 2002 Dec; 80(5):509-15. PubMed ID: 12355461
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Continuous synthesis of a tripeptide by successive condensation and transesterification catalyzed by two immobilized proteinases in organic solvent.
    Kimura Y; Yoshida T; Muraya K; Nakanishi K; Matsuno R
    Agric Biol Chem; 1990 Jun; 54(6):1433-40. PubMed ID: 1368563
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetics of enzymatic solid-to-solid peptide synthesis: synthesis of Z-aspartame and control of acid-base conditions by using inorganic salts.
    Erbeldinger M; Ni X; Halling PJ
    Biotechnol Bioeng; 2001 Jan; 72(1):69-76. PubMed ID: 11084596
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetics of enzymatic solid-to-solid peptide synthesis: intersubstrate compound, substrate ratio, and mixing effects.
    Erbeldinger M; Ni X; Halling PJ
    Biotechnol Bioeng; 1999 May; 63(3):316-21. PubMed ID: 10099611
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Synthesis of three- and tetrapeptides catalyzed by subtilisin suspensions in organic solvents].
    Getun IV; Filippova IIu; Lysogorskaia EN; Kolobanova SV; Oksenoĭt ES; Anisimova VV; Stepanov VM
    Bioorg Khim; 1998 Apr; 24(4):306-12. PubMed ID: 9612574
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of water and enzyme concentration on thermolysin-catalyzed solid-to-solid peptide synthesis.
    Erbeldinger M; Ni X; Halling PJ
    Biotechnol Bioeng; 1998 Jul; 59(1):68-72. PubMed ID: 10099315
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential effects of organic co-solvents on peptide synthesis and hydrolysis by thermolysin.
    Nevin DE; Beynon RJ
    Biomed Biochim Acta; 1991; 50(10-11):S118-21. PubMed ID: 1820031
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enzymatic synthesis of a CCK-8 tripeptide fragment in organic media.
    Capellas M; Benaiges MD; Caminal G; Gonzalez G; Lopez-Santín J; Clapés P
    Biotechnol Bioeng; 1996 Jun; 50(6):700-8. PubMed ID: 18627079
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A methodological study of the enzymatic synthesis of the tripeptide Z-Cys(Bzl)-Tyr-Ile-OtBu.
    Irokawa A; Tominaga M
    Pept Res; 1991; 4(6):340-6. PubMed ID: 1821169
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetic study of the alpha-chymotrypsin-catalyzed hydrolysis and synthesis of a peptide bond in a monophasic aqueous/organic reaction medium.
    Deschrevel B; Vincent JC; Thellier M
    Arch Biochem Biophys; 1993 Jul; 304(1):45-52. PubMed ID: 8323297
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reversible acetonitrile-induced inactivation/activation of thermolysin.
    Ulijn RV; Janssen AE; Moore BD; Halling PJ; Kelly SM; Price NC
    Chembiochem; 2002 Nov; 3(11):1112-6. PubMed ID: 12404637
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Synthesis of peptides catalyzed by papain in organic solvents with minimal water content].
    Mitin IuV; Schellenberger F
    Bioorg Khim; 1988 Jan; 14(1):5-9. PubMed ID: 3382433
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enzymatic synthesis of arginine-based cationic surfactants.
    Clapés P; Morán C; Infante MR
    Biotechnol Bioeng; 1999 May; 63(3):333-43. PubMed ID: 10099613
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Understanding enzyme action at solid surfaces.
    Halling PJ
    Biochem Soc Trans; 2006 Apr; 34(Pt 2):309-11. PubMed ID: 16545101
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [The interaction of carriers with proteolytic enzymes used for enzymatic synthesis of peptides in organic solvents].
    Morozova OV; Voiushina TL; Stepanov VM
    Prikl Biokhim Mikrobiol; 1994; 30(6):786-93. PubMed ID: 7831274
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermodynamic parameters monitoring the equilibrium shift of enzyme-catalyzed hydrolysis/synthesis reactions in favor of synthesis in mixtures of water and organic solvent.
    Deschrevel B; Vincent JC; Ripoll C; Thellier M
    Biotechnol Bioeng; 2003 Jan; 81(2):167-77. PubMed ID: 12451553
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enzymatic peptide synthesis in frozen aqueous systems: influence of modified reaction conditions on the peptide yield.
    Gerisch S; Ullmann G; Stubenrauch K; Jakubke HD
    Biol Chem Hoppe Seyler; 1994 Dec; 375(12):825-8. PubMed ID: 7710698
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of immobilization support, water activity, and enzyme ionization state on cutinase activity and enantioselectivity in organic media.
    Vidinha P; Harper N; Micaelo NM; Lourenco NM; da Silva MD; Cabral JM; Afonso CA; Soares CM; Barreiros S
    Biotechnol Bioeng; 2004 Feb; 85(4):442-9. PubMed ID: 14755562
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.