BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 10918304)

  • 1. DNA topology and the thermal stress response, a tale from mesophiles and hyperthermophiles.
    López-García P; Forterre P
    Bioessays; 2000 Aug; 22(8):738-46. PubMed ID: 10918304
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Control of DNA topology during thermal stress in hyperthermophilic archaea: DNA topoisomerase levels, activities and induced thermotolerance during heat and cold shock in Sulfolobus.
    López-García P; Forterre P
    Mol Microbiol; 1999 Aug; 33(4):766-77. PubMed ID: 10447886
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vitro DNA binding of the archaeal protein Sso7d induces negative supercoiling at temperatures typical for thermophilic growth.
    López-García P; Knapp S; Ladenstein R; Forterre P
    Nucleic Acids Res; 1998 May; 26(10):2322-8. PubMed ID: 9580681
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of bacteria growth temperature on the distribution of supercoiled DNA and its thermal stability.
    Adamcík J; Víglaský V; Valle F; Antalík M; Podhradský D; Dietler G
    Electrophoresis; 2002 Sep; 23(19):3300-9. PubMed ID: 12373757
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Positive supercoiling in thermophiles and mesophiles: of the good and evil.
    Valenti A; Perugino G; Rossi M; Ciaramella M
    Biochem Soc Trans; 2011 Jan; 39(1):58-63. PubMed ID: 21265747
    [TBL] [Abstract][Full Text] [Related]  

  • 6. DNA topology in hyperthermophilic archaea: reference states and their variation with growth phase, growth temperature, and temperature stresses.
    López-García P; Forterre P
    Mol Microbiol; 1997 Mar; 23(6):1267-79. PubMed ID: 9106217
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Growth inhibition mediated by excess negative supercoiling: the interplay between transcription elongation, R-loop formation and DNA topology.
    Drolet M
    Mol Microbiol; 2006 Feb; 59(3):723-30. PubMed ID: 16420346
    [TBL] [Abstract][Full Text] [Related]  

  • 8. DNA bending, compaction and negative supercoiling by the architectural protein Sso7d of Sulfolobus solfataricus.
    Napoli A; Zivanovic Y; Bocs C; Buhler C; Rossi M; Forterre P; Ciaramella M
    Nucleic Acids Res; 2002 Jun; 30(12):2656-62. PubMed ID: 12060682
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Ssh10b2 differs from its paralogue Ssh10b in cellular abundance and the ability to constrain DNA supercoils].
    Guo R; Xue H; Huo XF; Xu DY; Hu JC
    Wei Sheng Wu Xue Bao; 2006 Apr; 46(2):323-7. PubMed ID: 16736601
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Large-scale effects of transcriptional DNA supercoiling in vivo.
    Krasilnikov AS; Podtelezhnikov A; Vologodskii A; Mirkin SM
    J Mol Biol; 1999 Oct; 292(5):1149-60. PubMed ID: 10512709
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sequence periodicity in complete genomes of archaea suggests positive supercoiling.
    Herzel H; Weiss O; Trifonov EN
    J Biomol Struct Dyn; 1998 Oct; 16(2):341-5. PubMed ID: 9833672
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Varying levels of positive and negative supercoiling differently affect the efficiency with which topoisomerase II catenates and decatenates DNA.
    Roca J
    J Mol Biol; 2001 Jan; 305(3):441-50. PubMed ID: 11152602
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of varying the supercoiling of DNA on transcription and its regulation.
    Lim HM; Lewis DE; Lee HJ; Liu M; Adhya S
    Biochemistry; 2003 Sep; 42(36):10718-25. PubMed ID: 12962496
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Exchange of putrescine and potassium between cells and media as a factor in the adaptation of Escherichia coli to hyperosmotic shock].
    Tkachenko AG; Salakhetdinova OIa; Pshenichnov MR
    Mikrobiologiia; 1997; 66(3):329-34. PubMed ID: 9273446
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Suppression of temperature-sensitivity of a dnaA46 mutant by excessive DNA supercoiling.
    Kondo T; Mima S; Fukuma N; Sekimizu K; Tsuchiya T; Mizushima T
    Biochem J; 2000 Jun; 348 Pt 2(Pt 2):375-9. PubMed ID: 10816432
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The basal transcription factors TBP and TFB from the mesophilic archaeon Methanosarcina mazeii: structure and conformational changes upon interaction with stress-gene promoters.
    Thomsen J; De Biase A; Kaczanowski S; Macario AJ; Thomm M; Zielenkiewicz P; MacColl R; Conway de Macario E
    J Mol Biol; 2001 Jun; 309(3):589-603. PubMed ID: 11397082
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heat shock-induced excessive relaxation of DNA in Escherichia coli mutants lacking the histone-like protein HU.
    Ogata Y; Inoue R; Mizushima T; Kano Y; Miki T; Sekimizu K
    Biochim Biophys Acta; 1997 Sep; 1353(3):298-306. PubMed ID: 9349725
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protein motion from non-specific to specific DNA by three-dimensional routes aided by supercoiling.
    Gowers DM; Halford SE
    EMBO J; 2003 Mar; 22(6):1410-8. PubMed ID: 12628933
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adenosine 5'-O-(3-thio)triphosphate (ATPgammaS) promotes positive supercoiling of DNA by T. maritima reverse gyrase.
    Jungblut SP; Klostermeier D
    J Mol Biol; 2007 Aug; 371(1):197-209. PubMed ID: 17560602
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Topological alteration of plasmid DNA during cell growth of Escherichia coli.
    Furuno A; Kato M
    Nucleic Acids Symp Ser; 1992; (27):157-8. PubMed ID: 1289801
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.