These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 10918333)

  • 1. 3D interleaved water and fat image acquisition with chemical-shift correction.
    Kwok WE; Totterman SM; Zhong J
    Magn Reson Med; 2000 Aug; 44(2):322-30. PubMed ID: 10918333
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Correction of phase errors in quantitative water-fat imaging using a monopolar time-interleaved multi-echo gradient echo sequence.
    Ruschke S; Eggers H; Kooijman H; Diefenbach MN; Baum T; Haase A; Rummeny EJ; Hu HH; Karampinos DC
    Magn Reson Med; 2017 Sep; 78(3):984-996. PubMed ID: 27797100
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Generalized k-space decomposition with chemical shift correction for non-Cartesian water-fat imaging.
    Brodsky EK; Holmes JH; Yu H; Reeder SB
    Magn Reson Med; 2008 May; 59(5):1151-64. PubMed ID: 18429018
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterizing and eliminating errors in enhancement and subtraction artifacts in dynamic contrast-enhanced breast MRI: Chemical shift artifact of the third kind.
    Derakhshan JJ; McDonald ES; Siegelman ES; Schnall MD; Wehrli FW
    Magn Reson Med; 2018 Apr; 79(4):2277-2289. PubMed ID: 28840613
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interleaved water and fat dual-echo spin echo imaging with intrinsic chemical-shift elimination.
    Kwok WE; Totterman SM; Zhong J
    J Magn Reson Imaging; 2001 Feb; 13(2):318-23. PubMed ID: 11169841
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Technical Note: Interleaved bipolar acquisition and low-rank reconstruction for water-fat separation in MRI.
    Cho J; Park H
    Med Phys; 2018 Jul; 45(7):3229-3237. PubMed ID: 29772058
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fat suppression gradient-echo magnetic resonance imaging of experimental articular cartilage lesions: comparison between phase-contrast method at 0.23T and chemical shift selective method at 1.5T.
    Palosaari K; Ojala R; Blanco-Sequeiros R; Tervonen O
    J Magn Reson Imaging; 2003 Aug; 18(2):225-31. PubMed ID: 12884336
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simultaneous highly selective MR water and fat imaging using a simple new type of spectral-spatial excitation.
    Schick F
    Magn Reson Med; 1998 Aug; 40(2):194-202. PubMed ID: 9702701
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid chemical shift encoding with single-acquisition single-slab 3D GRASE.
    Kim H; Kim DH; Sohn CH; Park J
    Magn Reson Med; 2017 Nov; 78(5):1852-1861. PubMed ID: 28074609
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Robust water-fat separation for multi-echo gradient-recalled echo sequence using convolutional neural network.
    Cho J; Park H
    Magn Reson Med; 2019 Jul; 82(1):476-484. PubMed ID: 30790344
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Subchondral bone and cartilage thickness from MRI: effects of chemical-shift artifact.
    McGibbon CA; Bencardino J; Palmer WE
    MAGMA; 2003 Feb; 16(1):1-9. PubMed ID: 12695880
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chemical shift artifact-free imaging: a new option in MRI?
    Weis J; Ericsson A; Hemmingsson A
    Magn Reson Imaging; 1998 Sep; 16(7):839-44. PubMed ID: 9811148
    [TBL] [Abstract][Full Text] [Related]  

  • 13. UTE imaging with simultaneous water and fat signal suppression using a time-efficient multispoke inversion recovery pulse sequence.
    Carl M; Bydder GM; Du J
    Magn Reson Med; 2016 Aug; 76(2):577-82. PubMed ID: 26309221
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interleaved water and fat imaging and applications to lipid quantitation using the gradient reversal technique.
    Tang H; Wu EX; Kennan R; Liu H; Williams DS
    J Magn Reson Imaging; 2007 Oct; 26(4):1064-70. PubMed ID: 17896353
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Separation of water and fat MR images in a single scan at .35 T using "sandwich" echoes.
    Zhang W; Goldhaber DM; Kramer DM
    J Magn Reson Imaging; 1996; 6(6):909-17. PubMed ID: 8956137
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Water fat separation using the single acquisition "sandwich" type 3-point Dixon method to optimize knee joint scans.
    Shibahara E; Fukatsu H; Naganawa S; Ito T; Iwayama E; Ishigaki T; Segawa T; Zhang W
    Nagoya J Med Sci; 2000 May; 63(1-2):41-9. PubMed ID: 10911719
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fat quantification using an interleaved bipolar acquisition.
    Soliman AS; Wiens CN; Wade TP; McKenzie CA
    Magn Reson Med; 2016 May; 75(5):2000-8. PubMed ID: 26094743
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simultaneous spatial and spectral selective excitation.
    Meyer CH; Pauly JM; Macovski A; Nishimura DG
    Magn Reson Med; 1990 Aug; 15(2):287-304. PubMed ID: 2392053
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Water-fat separation with IDEAL gradient-echo imaging.
    Reeder SB; McKenzie CA; Pineda AR; Yu H; Shimakawa A; Brau AC; Hargreaves BA; Gold GE; Brittain JH
    J Magn Reson Imaging; 2007 Mar; 25(3):644-52. PubMed ID: 17326087
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Robust water fat separated dual-echo MRI by phase-sensitive reconstruction.
    Romu T; Dahlström N; Leinhard OD; Borga M
    Magn Reson Med; 2017 Sep; 78(3):1208-1216. PubMed ID: 27775180
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.