These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
246 related articles for article (PubMed ID: 10919330)
1. Physiological effects of 5-hydroxymethylfurfural on Saccharomyces cerevisiae. Taherzadeh MJ; Gustafsson L; Niklasson C; Lidén G Appl Microbiol Biotechnol; 2000 Jun; 53(6):701-8. PubMed ID: 10919330 [TBL] [Abstract][Full Text] [Related]
2. Multiple gene-mediated NAD(P)H-dependent aldehyde reduction is a mechanism of in situ detoxification of furfural and 5-hydroxymethylfurfural by Saccharomyces cerevisiae. Liu ZL; Moon J; Andersh BJ; Slininger PJ; Weber S Appl Microbiol Biotechnol; 2008 Dec; 81(4):743-53. PubMed ID: 18810428 [TBL] [Abstract][Full Text] [Related]
3. NADH- vs NADPH-coupled reduction of 5-hydroxymethyl furfural (HMF) and its implications on product distribution in Saccharomyces cerevisiae. Almeida JR; Röder A; Modig T; Laadan B; Lidén G; Gorwa-Grauslund MF Appl Microbiol Biotechnol; 2008 Apr; 78(6):939-45. PubMed ID: 18330568 [TBL] [Abstract][Full Text] [Related]
4. Adaptive response of yeasts to furfural and 5-hydroxymethylfurfural and new chemical evidence for HMF conversion to 2,5-bis-hydroxymethylfuran. Liu ZL; Slininger PJ; Dien BS; Berhow MA; Kurtzman CP; Gorsich SW J Ind Microbiol Biotechnol; 2004 Sep; 31(8):345-52. PubMed ID: 15338422 [TBL] [Abstract][Full Text] [Related]
6. Carbon fluxes of xylose-consuming Saccharomyces cerevisiae strains are affected differently by NADH and NADPH usage in HMF reduction. Almeida JR; Bertilsson M; Hahn-Hägerdal B; Lidén G; Gorwa-Grauslund MF Appl Microbiol Biotechnol; 2009 Sep; 84(4):751-61. PubMed ID: 19506862 [TBL] [Abstract][Full Text] [Related]
7. Enhanced biotransformation of furfural and hydroxymethylfurfural by newly developed ethanologenic yeast strains. Liu ZL; Slininger PJ; Gorsich SW Appl Biochem Biotechnol; 2005; 121-124():451-60. PubMed ID: 15917621 [TBL] [Abstract][Full Text] [Related]
8. Effects of furfural on anaerobic continuous cultivation of Saccharomyces cerevisiae. Horváth IS; Taherzadeh MJ; Niklasson C; Lidén G Biotechnol Bioeng; 2001 Dec; 75(5):540-9. PubMed ID: 11745129 [TBL] [Abstract][Full Text] [Related]
9. Kinetic mechanism of an aldehyde reductase of Saccharomyces cerevisiae that relieves toxicity of furfural and 5-hydroxymethylfurfural. Jordan DB; Braker JD; Bowman MJ; Vermillion KE; Moon J; Liu ZL Biochim Biophys Acta; 2011 Dec; 1814(12):1686-94. PubMed ID: 21890004 [TBL] [Abstract][Full Text] [Related]
10. Furfural, 5-hydroxymethyl furfural, and acetoin act as external electron acceptors during anaerobic fermentation of xylose in recombinant Saccharomyces cerevisiae. Wahlbom CF; Hahn-Hägerdal B Biotechnol Bioeng; 2002 Apr; 78(2):172-8. PubMed ID: 11870608 [TBL] [Abstract][Full Text] [Related]
11. Degradation of 5-hydroxymethylfurfural during yeast fermentation. Akıllıoglu HG; Mogol BA; Gökmen V Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2011 Dec; 28(12):1629-35. PubMed ID: 22010851 [TBL] [Abstract][Full Text] [Related]
12. Biomass conversion inhibitors furfural and 5-hydroxymethylfurfural induce formation of messenger RNP granules and attenuate translation activity in Saccharomyces cerevisiae. Iwaki A; Kawai T; Yamamoto Y; Izawa S Appl Environ Microbiol; 2013 Mar; 79(5):1661-7. PubMed ID: 23275506 [TBL] [Abstract][Full Text] [Related]
13. Conversion of furfural in aerobic and anaerobic batch fermentation of glucose by Saccharomyces cerevisiae. Taherzadeh MJ; Gustafsson L; Niklasson C; Lidén G J Biosci Bioeng; 1999; 87(2):169-74. PubMed ID: 16232445 [TBL] [Abstract][Full Text] [Related]
14. Biotransformation of furfural and 5-hydroxymethyl furfural (HMF) by Clostridium acetobutylicum ATCC 824 during butanol fermentation. Zhang Y; Han B; Ezeji TC N Biotechnol; 2012 Feb; 29(3):345-51. PubMed ID: 21925629 [TBL] [Abstract][Full Text] [Related]
15. Reduction of furan derivatives by overexpressing NADH-dependent Adh1 improves ethanol fermentation using xylose as sole carbon source with Saccharomyces cerevisiae harboring XR-XDH pathway. Ishii J; Yoshimura K; Hasunuma T; Kondo A Appl Microbiol Biotechnol; 2013 Mar; 97(6):2597-607. PubMed ID: 23001007 [TBL] [Abstract][Full Text] [Related]
16. Characterization of the Furfural and 5-Hydroxymethylfurfural (HMF) Metabolic Pathway in the Novel Isolate Pseudomonas putida ALS1267. Crigler J; Eiteman MA; Altman E Appl Biochem Biotechnol; 2020 Mar; 190(3):918-930. PubMed ID: 31605303 [TBL] [Abstract][Full Text] [Related]
17. Identification of an NADH-dependent 5-hydroxymethylfurfural-reducing alcohol dehydrogenase in Saccharomyces cerevisiae. Laadan B; Almeida JR; Rådström P; Hahn-Hägerdal B; Gorwa-Grauslund M Yeast; 2008 Mar; 25(3):191-8. PubMed ID: 18302314 [TBL] [Abstract][Full Text] [Related]
18. Biocatalytic Reduction of HMF to 2,5-Bis(hydroxymethyl)furan by HMF-Tolerant Whole Cells. Li YM; Zhang XY; Li N; Xu P; Lou WY; Zong MH ChemSusChem; 2017 Jan; 10(2):372-378. PubMed ID: 27966286 [TBL] [Abstract][Full Text] [Related]
19. Influence of furfural on anaerobic glycolytic kinetics of Saccharomyces cerevisiae in batch culture. Palmqvist E; Almeida JS; Hahn-Hägerdal B Biotechnol Bioeng; 1999 Feb; 62(4):447-54. PubMed ID: 9921153 [TBL] [Abstract][Full Text] [Related]
20. Roles of the Yap1 transcription factor and antioxidants in Saccharomyces cerevisiae's tolerance to furfural and 5-hydroxymethylfurfural, which function as thiol-reactive electrophiles generating oxidative stress. Kim D; Hahn JS Appl Environ Microbiol; 2013 Aug; 79(16):5069-77. PubMed ID: 23793623 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]