BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 10919380)

  • 41. [ESTs analysis of resistance to powdery mildew in wheat at primary infected stage].
    Luo M; Kong XY; Huo NX; Zhou RH; Jia JZ
    Yi Chuan Xue Bao; 2002 Jun; 29(6):525-30. PubMed ID: 12096631
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Expressed sequences tags of the anther smut fungus, Microbotryum violaceum, identify mating and pathogenicity genes.
    Yockteng R; Marthey S; Chiapello H; Gendrault A; Hood ME; Rodolphe F; Devier B; Wincker P; Dossat C; Giraud T
    BMC Genomics; 2007 Aug; 8():272. PubMed ID: 17692127
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Characterization of the multiple-copy host-selective toxin gene, ToxB, in pathogenic and nonpathogenic isolates of Pyrenophora tritici-repentis.
    Martinez JP; Oesch NW; Ciuffetti LM
    Mol Plant Microbe Interact; 2004 May; 17(5):467-74. PubMed ID: 15141950
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Specificity of incomplete resistance to Mycosphaerella graminicola in wheat.
    Krenz JE; Sackett KE; Mundt CC
    Phytopathology; 2008 May; 98(5):555-61. PubMed ID: 18943223
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Rapid induction of a protein disulfide isomerase and defense-related genes in wheat in response to the hemibiotrophic fungal pathogen Mycosphaerella graminicola.
    Ray S; Anderson JM; Urmeev FI; Goodwin SB
    Plant Mol Biol; 2003 Nov; 53(5):701-14. PubMed ID: 15010608
    [TBL] [Abstract][Full Text] [Related]  

  • 46. MAP kinase signalling pathway components and targets conserved between the distantly related plant pathogenic fungi Mycosphaerella graminicola and Magnaporthe grisea.
    Kramer B; Thines E; Foster AJ
    Fungal Genet Biol; 2009 Sep; 46(9):667-81. PubMed ID: 19520179
    [TBL] [Abstract][Full Text] [Related]  

  • 47. CHARACTERIZATION OF A TUNISIAN POPULATION OF MYCOSPHAERELLA GRAMINICOLA USING MITOCHONDRIAL DNA MARKERS.
    Naouari M; Siah A; Randoux B; Elgazzah M; Reignault P; Halama P
    Commun Agric Appl Biol Sci; 2014; 79(3):379-83. PubMed ID: 26080472
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Differential gene expression during conidiation in the grape powdery mildew pathogen, Erysiphe necator.
    Wakefield L; Gadoury DM; Seem RC; Milgroom MG; Sun Q; Cadle-Davidson L
    Phytopathology; 2011 Jul; 101(7):839-46. PubMed ID: 21405992
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Identification and characterisation of Mycosphaerella graminicola secreted or surface-associated proteins with variable intragenic coding repeats.
    Rudd JJ; Antoniw J; Marshall R; Motteram J; Fraaije B; Hammond-Kosack K
    Fungal Genet Biol; 2010 Jan; 47(1):19-32. PubMed ID: 19887112
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Expressed sequences from conidial, mycelial, and sexual stages of Neurospora crassa.
    Nelson MA; Kang S; Braun EL; Crawford ME; Dolan PL; Leonard PM; Mitchell J; Armijo AM; Bean L; Blueyes E; Cushing T; Errett A; Fleharty M; Gorman M; Judson K; Miller R; Ortega J; Pavlova I; Perea J; Todisco S; Trujillo R; Valentine J; Wells A; Werner-Washburne M; Natvig DO
    Fungal Genet Biol; 1997 Jun; 21(3):348-63. PubMed ID: 9290248
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Characterization of the ABC transporter genes MgAtr1 and MgAtr2 from the wheat pathogen Mycosphaerella graminicola.
    Zwiers LH; De Waard MA
    Fungal Genet Biol; 2000 Jul; 30(2):115-25. PubMed ID: 11017767
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Conditional promoters for analysis of essential genes in Zymoseptoria tritici.
    Kilaru S; Ma W; Schuster M; Courbot M; Steinberg G
    Fungal Genet Biol; 2015 Jun; 79():166-73. PubMed ID: 26092803
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Are azole fungicides losing ground against Septoria wheat disease? Resistance mechanisms in Mycosphaerella graminicola.
    Cools HJ; Fraaije BA
    Pest Manag Sci; 2008 Jul; 64(7):681-4. PubMed ID: 18366065
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Mycosphaerella graminicola: from genomics to disease control.
    Orton ES; Deller S; Brown JK
    Mol Plant Pathol; 2011 Jun; 12(5):413-24. PubMed ID: 21535348
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Finished genome of the fungal wheat pathogen Mycosphaerella graminicola reveals dispensome structure, chromosome plasticity, and stealth pathogenesis.
    Goodwin SB; M'barek SB; Dhillon B; Wittenberg AH; Crane CF; Hane JK; Foster AJ; Van der Lee TA; Grimwood J; Aerts A; Antoniw J; Bailey A; Bluhm B; Bowler J; Bristow J; van der Burgt A; Canto-Canché B; Churchill AC; Conde-Ferràez L; Cools HJ; Coutinho PM; Csukai M; Dehal P; De Wit P; Donzelli B; van de Geest HC; van Ham RC; Hammond-Kosack KE; Henrissat B; Kilian A; Kobayashi AK; Koopmann E; Kourmpetis Y; Kuzniar A; Lindquist E; Lombard V; Maliepaard C; Martins N; Mehrabi R; Nap JP; Ponomarenko A; Rudd JJ; Salamov A; Schmutz J; Schouten HJ; Shapiro H; Stergiopoulos I; Torriani SF; Tu H; de Vries RP; Waalwijk C; Ware SB; Wiebenga A; Zwiers LH; Oliver RP; Grigoriev IV; Kema GH
    PLoS Genet; 2011 Jun; 7(6):e1002070. PubMed ID: 21695235
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The wheat-Septoria conflict: a new front opening up?
    O'Driscoll A; Kildea S; Doohan F; Spink J; Mullins E
    Trends Plant Sci; 2014 Sep; 19(9):602-10. PubMed ID: 24957882
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Proteomic identification of extracellular proteins regulated by the Gna1 Galpha subunit in Stagonospora nodorum.
    Tan KC; Heazlewood JL; Millar AH; Oliver RP; Solomon PS
    Mycol Res; 2009 May; 113(5):523-31. PubMed ID: 19284980
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The landscape of transposable elements in the finished genome of the fungal wheat pathogen Mycosphaerella graminicola.
    Dhillon B; Gill N; Hamelin RC; Goodwin SB
    BMC Genomics; 2014 Dec; 15(1):1132. PubMed ID: 25519841
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Analysis of cytochrome b(5) reductase-mediated metabolism in the phytopathogenic fungus Zymoseptoria tritici reveals novel functionalities implicated in virulence.
    Derbyshire MC; Michaelson L; Parker J; Kelly S; Thacker U; Powers SJ; Bailey A; Hammond-Kosack K; Courbot M; Rudd J
    Fungal Genet Biol; 2015 Sep; 82():69-84. PubMed ID: 26074495
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Gene expression profiling of the plant pathogenic basidiomycetous fungus Rhizoctonia solani AG 4 reveals putative virulence factors.
    Lakshman DK; Alkharouf N; Roberts DP; Natarajan SS; Mitra A
    Mycologia; 2012; 104(5):1020-35. PubMed ID: 22778167
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.