These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
154 related articles for article (PubMed ID: 10919810)
1. Long-chain aldehyde dehydrogenase that participates in n-alkane utilization and wax ester synthesis in Acinetobacter sp. strain M-1. Ishige T; Tani A; Sakai Y; Kato N Appl Environ Microbiol; 2000 Aug; 66(8):3481-6. PubMed ID: 10919810 [TBL] [Abstract][Full Text] [Related]
2. Wax ester production from n-alkanes by Acinetobacter sp. strain M-1: ultrastructure of cellular inclusions and role of acyl coenzyme A reductase. Ishige T; Tani A; Takabe K; Kawasaki K; Sakai Y; Kato N Appl Environ Microbiol; 2002 Mar; 68(3):1192-5. PubMed ID: 11872467 [TBL] [Abstract][Full Text] [Related]
3. Fatty aldehyde dehydrogenases in Acinetobacter sp. strain HO1-N: role in hexadecanol metabolism. Singer ME; Finnerty WR J Bacteriol; 1985 Dec; 164(3):1011-6. PubMed ID: 4066609 [TBL] [Abstract][Full Text] [Related]
4. Thio wax ester biosynthesis utilizing the unspecific bifunctional wax ester synthase/acyl coenzyme A:diacylglycerol acyltransferase of Acinetobacter sp. strain ADP1. Uthoff S; Stöveken T; Weber N; Vosmann K; Klein E; Kalscheuer R; Steinbüchel A Appl Environ Microbiol; 2005 Feb; 71(2):790-6. PubMed ID: 15691932 [TBL] [Abstract][Full Text] [Related]
5. Isolation of mutants of Acinetobacter calcoaceticus deficient in wax ester synthesis and complementation of one mutation with a gene encoding a fatty acyl coenzyme A reductase. Reiser S; Somerville C J Bacteriol; 1997 May; 179(9):2969-75. PubMed ID: 9139916 [TBL] [Abstract][Full Text] [Related]
6. Identification of novel genes involved in long-chain n-alkane degradation by Acinetobacter sp. strain DSM 17874. Throne-Holst M; Wentzel A; Ellingsen TE; Kotlar HK; Zotchev SB Appl Environ Microbiol; 2007 May; 73(10):3327-32. PubMed ID: 17400787 [TBL] [Abstract][Full Text] [Related]
7. Thermostable NADP(+)-dependent medium-chain alcohol dehydrogenase from Acinetobacter sp. strain M-1: purification and characterization and gene expression in Escherichia coli. Tani A; Sakai Y; Ishige T; Kato N Appl Environ Microbiol; 2000 Dec; 66(12):5231-5. PubMed ID: 11097895 [TBL] [Abstract][Full Text] [Related]
8. Isolation and characterization of a novel oxygenase that catalyzes the first step of n-alkane oxidation in Acinetobacter sp. strain M-1. Maeng JH; Sakai Y; Tani Y; Kato N J Bacteriol; 1996 Jul; 178(13):3695-700. PubMed ID: 8682768 [TBL] [Abstract][Full Text] [Related]
9. The wax ester synthase/acyl coenzyme A:diacylglycerol acyltransferase from Acinetobacter sp. strain ADP1: characterization of a novel type of acyltransferase. Stöveken T; Kalscheuer R; Malkus U; Reichelt R; Steinbüchel A J Bacteriol; 2005 Feb; 187(4):1369-76. PubMed ID: 15687201 [TBL] [Abstract][Full Text] [Related]
10. Utilizing Alcohol for Alkane Biosynthesis by Introducing a Fatty Alcohol Dehydrogenase. Sui YA; Kishino S; Maruyama S; Ito M; Muramatsu M; Obata S; Ogawa J Appl Environ Microbiol; 2022 Dec; 88(23):e0126422. PubMed ID: 36416567 [TBL] [Abstract][Full Text] [Related]
11. Alcohol dehydrogenases in Acinetobacter sp. strain HO1-N: role in hexadecane and hexadecanol metabolism. Singer ME; Finnerty WR J Bacteriol; 1985 Dec; 164(3):1017-24. PubMed ID: 2933391 [TBL] [Abstract][Full Text] [Related]
12. Long-chain alcohol and aldehyde dehydrogenase activities in Acinetobacter calcoaceticus strain HO1-N. Fox MG; Dickinson FM; Ratledge C J Gen Microbiol; 1992 Sep; 138(9):1963-72. PubMed ID: 1402794 [TBL] [Abstract][Full Text] [Related]
13. Involvement of an alkane hydroxylase system of Gordonia sp. strain SoCg in degradation of solid n-alkanes. Lo Piccolo L; De Pasquale C; Fodale R; Puglia AM; Quatrini P Appl Environ Microbiol; 2011 Feb; 77(4):1204-13. PubMed ID: 21183636 [TBL] [Abstract][Full Text] [Related]
14. Gene cloning and characterization of an aldehyde dehydrogenase from long-chain alkane-degrading Geobacillus thermoleovorans B23. Kato T; Miyanaga A; Kanaya S; Morikawa M Extremophiles; 2010 Jan; 14(1):33-9. PubMed ID: 19787414 [TBL] [Abstract][Full Text] [Related]
15. Biosynthesis of isoprenoid wax ester in Marinobacter hydrocarbonoclasticus DSM 8798: identification and characterization of isoprenoid coenzyme A synthetase and wax ester synthases. Holtzapple E; Schmidt-Dannert C J Bacteriol; 2007 May; 189(10):3804-12. PubMed ID: 17351040 [TBL] [Abstract][Full Text] [Related]
16. areABC genes determine the catabolism of aryl esters in Acinetobacter sp. Strain ADP1. Jones RM; Collier LS; Neidle EL; Williams PA J Bacteriol; 1999 Aug; 181(15):4568-75. PubMed ID: 10419955 [TBL] [Abstract][Full Text] [Related]
17. Modulation of ethanol stress tolerance by aldehyde dehydrogenase in the mycorrhizal fungus Tricholoma vaccinum. Asiimwe T; Krause K; Schlunk I; Kothe E Mycorrhiza; 2012 Aug; 22(6):471-84. PubMed ID: 22159964 [TBL] [Abstract][Full Text] [Related]
18. Alkane and wax ester production from lignin-related aromatic compounds. Salmela M; Lehtinen T; Efimova E; Santala S; Santala V Biotechnol Bioeng; 2019 Aug; 116(8):1934-1945. PubMed ID: 31038208 [TBL] [Abstract][Full Text] [Related]
19. Real-time monitoring of intracellular wax ester metabolism. Santala S; Efimova E; Karp M; Santala V Microb Cell Fact; 2011 Sep; 10():75. PubMed ID: 21961954 [TBL] [Abstract][Full Text] [Related]
20. sal genes determining the catabolism of salicylate esters are part of a supraoperonic cluster of catabolic genes in Acinetobacter sp. strain ADP1. Jones RM; Pagmantidis V; Williams PA J Bacteriol; 2000 Apr; 182(7):2018-25. PubMed ID: 10715011 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]