BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 10919812)

  • 1. Degradation of triphenyltin by a fluorescent pseudomonad.
    Inoue H; Takimura O; Fuse H; Murakami K; Kamimura K; Yamaoka Y
    Appl Environ Microbiol; 2000 Aug; 66(8):3492-8. PubMed ID: 10919812
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tin-carbon cleavage of organotin compounds by pyoverdine from Pseudomonas chlororaphis.
    Inoue H; Takimura O; Kawaguchi K; Nitoda T; Fuse H; Murakami K; Yamaoka Y
    Appl Environ Microbiol; 2003 Feb; 69(2):878-83. PubMed ID: 12571007
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Triphenyltin biodegradation and intracellular material release by Brevibacillus brevis.
    Ye J; Zhao H; Yin H; Peng H; Tang L; Gao J; Ma Y
    Chemosphere; 2014 Jun; 105():62-7. PubMed ID: 24388446
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biosorption and biodegradation of triphenyltin by Stenotrophomonas maltophilia and their influence on cellular metabolism.
    Gao J; Ye J; Ma J; Tang L; Huang J
    J Hazard Mater; 2014 Jul; 276():112-9. PubMed ID: 24866561
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Characteristics of biodegradation of triphenyltin by Rhodopseudomonos spheroids].
    Chen SN; Ye JS; Yin H; Peng H; Zhang N; He BY
    Huan Jing Ke Xue; 2011 Feb; 32(2):536-41. PubMed ID: 21528580
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biosorption and biodegradation of triphenyltin by Brevibacillus brevis.
    Ye J; Yin H; Peng H; Bai J; Xie D; Wang L
    Bioresour Technol; 2013 Feb; 129():236-41. PubMed ID: 23247152
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Organotin decomposition by pyochelin, secreted by Pseudomonas aeruginosa even in an iron-sufficient environment.
    Sun GX; Zhou WQ; Zhong JJ
    Appl Environ Microbiol; 2006 Sep; 72(9):6411-3. PubMed ID: 16957273
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Triphenyltin recognition by primary structures of effector proteins and the protein network of Bacillus thuringiensis during the triphenyltin degradation process.
    Wang L; Ye J; Ou H; Qin H; Long Y; Ke J
    Sci Rep; 2017 Jun; 7(1):4133. PubMed ID: 28646170
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Utilization of acyl-homoserine lactone quorum signals for growth by a soil pseudomonad and Pseudomonas aeruginosa PAO1.
    Huang JJ; Han JI; Zhang LH; Leadbetter JR
    Appl Environ Microbiol; 2003 Oct; 69(10):5941-9. PubMed ID: 14532048
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phenyltins in surface sediments of the Visakhapatnam harbour, India.
    Jadhav SS; Bhosle SN; Krishnamurthy V; Sawant S
    Bull Environ Contam Toxicol; 2012 Jun; 88(6):933-8. PubMed ID: 22398692
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanism of augmentation of organotin decomposition by ferripyochelin: formation of hydroxyl radical and organotin-pyochelin-iron ternary complex.
    Sun GX; Zhong JJ
    Appl Environ Microbiol; 2006 Nov; 72(11):7264-9. PubMed ID: 16997992
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biodegradation of nicotine by newly isolated Pseudomonas sp. CS3 and its metabolites.
    Wang HH; Yin B; Peng XX; Wang JY; Xie ZH; Gao J; Tang XK
    J Appl Microbiol; 2012 Feb; 112(2):258-68. PubMed ID: 22129149
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pseudomonas fluorescens biotype G, the dominant fluorescent pseudomonad in South Australian soils and wheat rhizospheres.
    Sands DC; Rovira AD
    J Appl Bacteriol; 1971 Mar; 34(1):261-75. PubMed ID: 4935441
    [No Abstract]   [Full Text] [Related]  

  • 14. Isolation, identification, and characterization of a lipoate-degrading pseudomonad and of a lipoate catabolite.
    Shih JC; Wright LD; McCormick DB
    J Bacteriol; 1972 Dec; 112(3):1043-51. PubMed ID: 4565525
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Isolation and characterization of a novel 2-sec-butylphenol-degrading bacterium Pseudomonas sp. strain MS-1.
    Toyama T; Maeda N; Murashita M; Chang YC; Kikuchi S
    Biodegradation; 2010 Apr; 21(2):157-65. PubMed ID: 19705287
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Aflatoxin B₁ degradation by a Pseudomonas strain.
    Sangare L; Zhao Y; Folly YM; Chang J; Li J; Selvaraj JN; Xing F; Zhou L; Wang Y; Liu Y
    Toxins (Basel); 2014 Oct; 6(10):3028-40. PubMed ID: 25341538
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Degradation of 3-chlorobiphenyl by in vivo constructed hybrid pseudomonads.
    Mokross H; Schmidt E; Reineke W
    FEMS Microbiol Lett; 1990 Sep; 59(1-2):179-85. PubMed ID: 2276606
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mineralization of the herbicide atrazine as a carbon source by a Pseudomonas strain.
    Yanze-Kontchou C; Gschwind N
    Appl Environ Microbiol; 1994 Dec; 60(12):4297-302. PubMed ID: 7811069
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Isolation and characterization of Pseudomonas sp. strain HF-1, capable of degrading nicotine.
    Ruan A; Min H; Peng X; Huang Z
    Res Microbiol; 2005; 156(5-6):700-6. PubMed ID: 15921891
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interactions among triphenyltin degradation, phospholipid synthesis and membrane characteristics of Bacillus thuringiensis in the presence of d-malic acid.
    Wang L; Yi W; Ye J; Qin H; Long Y; Yang M; Li Q
    Chemosphere; 2017 Feb; 169():403-412. PubMed ID: 27886543
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.