BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 10919818)

  • 1. Characterization of an isolate that uses vinyl chloride as a growth substrate under aerobic conditions.
    Verce MF; Ulrich RL; Freedman DL
    Appl Environ Microbiol; 2000 Aug; 66(8):3535-42. PubMed ID: 10919818
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transition from cometabolic to growth-linked biodegradation of vinyl chloride by a Pseudomonas sp. isolated on ethene.
    Verce MF; Ulrich RL; Freedman DL
    Environ Sci Technol; 2001 Nov; 35(21):4242-51. PubMed ID: 11718337
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biodegradation of chloromethane by Pseudomonas aeruginosa strain NB1 under nitrate-reducing and aerobic conditions.
    Freedman DL; Swamy M; Bell NC; Verce MF
    Appl Environ Microbiol; 2004 Aug; 70(8):4629-34. PubMed ID: 15294795
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cometabolism of cis-1,2-dichloroethene by aerobic cultures grown on vinyl chloride as the primary substrate.
    Verce MF; Gunsch CK; Danko AS; Freedman DL
    Environ Sci Technol; 2002 May; 36(10):2171-7. PubMed ID: 12038826
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling the kinetics of vinyl chloride cometabolism by an ethane-grown Pseudomonas sp.
    Verce MF; Freedman DL
    Biotechnol Bioeng; 2000-2001; 71(4):274-85. PubMed ID: 11291037
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adaptation of aerobic, ethene-assimilating Mycobacterium strains to vinyl chloride as a growth substrate.
    Jin YO; Mattes TE
    Environ Sci Technol; 2008 Jul; 42(13):4784-9. PubMed ID: 18678006
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Involvement of linear plasmids in aerobic biodegradation of vinyl chloride.
    Danko AS; Luo M; Bagwell CE; Brigmon RL; Freedman DL
    Appl Environ Microbiol; 2004 Oct; 70(10):6092-7. PubMed ID: 15466555
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biodegradation of vinyl chloride and cis-dichloroethene by a Ralstonia sp. strain TRW-1.
    Elango VK; Liggenstoffer AS; Fathepure BZ
    Appl Microbiol Biotechnol; 2006 Oct; 72(6):1270-5. PubMed ID: 16642331
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Substrate interactions during aerobic biodegradation of methane, ethene, vinyl chloride and 1,2-dichloroethenes.
    Freedman DL; Danko AS; Verce MF
    Water Sci Technol; 2001; 43(5):333-40. PubMed ID: 11379150
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aerobic Vinyl Chloride Metabolism in Groundwater Microcosms by Methanotrophic and Etheneotrophic Bacteria.
    Findlay M; Smoler DF; Fogel S; Mattes TE
    Environ Sci Technol; 2016 Apr; 50(7):3617-25. PubMed ID: 26918370
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Distribution of the coenzyme M pathway of epoxide metabolism among ethene- and vinyl chloride-degrading Mycobacterium strains.
    Coleman NV; Spain JC
    Appl Environ Microbiol; 2003 Oct; 69(10):6041-6. PubMed ID: 14532060
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Complete detoxification of vinyl chloride by an anaerobic enrichment culture and identification of the reductively dechlorinating population as a Dehalococcoides species.
    He J; Ritalahti KM; Aiello MR; Löffler FE
    Appl Environ Microbiol; 2003 Feb; 69(2):996-1003. PubMed ID: 12571022
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Small-scale oxygen distribution determines the vinyl chloride biodegradation pathway in surficial sediments of riverbed hyporheic zones.
    Atashgahi S; Maphosa F; Doğan E; Smidt H; Springael D; Dejonghe W
    FEMS Microbiol Ecol; 2013 Apr; 84(1):133-42. PubMed ID: 23167955
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparative evaluation of chloroethene dechlorination to ethene by Dehalococcoides-like microorganisms.
    Cupples AM; Spormann AM; McCarty PL
    Environ Sci Technol; 2004 Sep; 38(18):4768-74. PubMed ID: 15487786
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phylogenetic and kinetic diversity of aerobic vinyl chloride-assimilating bacteria from contaminated sites.
    Coleman NV; Mattes TE; Gossett JM; Spain JC
    Appl Environ Microbiol; 2002 Dec; 68(12):6162-71. PubMed ID: 12450841
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Abundance and activity of vinyl chloride (VC)-oxidizing bacteria in a dilute groundwater VC plume biostimulated with oxygen and ethene.
    Mattes TE; Jin YO; Livermore J; Pearl M; Liu X
    Appl Microbiol Biotechnol; 2015 Nov; 99(21):9267-76. PubMed ID: 26169630
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of a highly enriched dehalococcoides-containing culture that grows on vinyl chloride and trichloroethene.
    Duhamel M; Mo K; Edwards EA
    Appl Environ Microbiol; 2004 Sep; 70(9):5538-45. PubMed ID: 15345442
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Aerobic biodegradation of vinyl chloride by a highly enriched mixed culture.
    Singh H; Löffler FE; Fathepure BZ
    Biodegradation; 2004 Jun; 15(3):197-204. PubMed ID: 15228077
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bioaugmentation potential of a vinyl chloride-assimilating Mycobacterium sp., isolated from a chloroethene-contaminated aquifer.
    Fathepure BZ; Elango VK; Singh H; Bruner MA
    FEMS Microbiol Lett; 2005 Jul; 248(2):227-34. PubMed ID: 15964716
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanism controlling the extended lag period associated with vinyl chloride starvation in Nocardioides sp. strain JS614.
    Mattes TE; Coleman NV; Chuang AS; Rogers AJ; Spain JC; Gossett JM
    Arch Microbiol; 2007 Mar; 187(3):217-26. PubMed ID: 17308936
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.