These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
287 related articles for article (PubMed ID: 10919825)
1. Community structure, cellular rRNA content, and activity of sulfate-reducing bacteria in marine arctic sediments. Ravenschlag K; Sahm K; Knoblauch C; Jørgensen BB; Amann R Appl Environ Microbiol; 2000 Aug; 66(8):3592-602. PubMed ID: 10919825 [TBL] [Abstract][Full Text] [Related]
2. Diversity and vertical distribution of cultured and uncultured Deltaproteobacteria in an intertidal mud flat of the Wadden Sea. Mussmann M; Ishii K; Rabus R; Amann R Environ Microbiol; 2005 Mar; 7(3):405-18. PubMed ID: 15683401 [TBL] [Abstract][Full Text] [Related]
3. Identity and abundance of active sulfate-reducing bacteria in deep tidal flat sediments determined by directed cultivation and CARD-FISH analysis. Gittel A; Mussmann M; Sass H; Cypionka H; Könneke M Environ Microbiol; 2008 Oct; 10(10):2645-58. PubMed ID: 18627412 [TBL] [Abstract][Full Text] [Related]
4. Sulfate-reducing bacteria in tubes constructed by the marine infaunal polychaete Diopatra cuprea. Matsui GY; Ringelberg DB; Lovell CR Appl Environ Microbiol; 2004 Dec; 70(12):7053-65. PubMed ID: 15574900 [TBL] [Abstract][Full Text] [Related]
5. Comparative analysis of methane-oxidizing archaea and sulfate-reducing bacteria in anoxic marine sediments. Orphan VJ; Hinrichs KU; Ussler W; Paull CK; Taylor LT; Sylva SP; Hayes JM; Delong EF Appl Environ Microbiol; 2001 Apr; 67(4):1922-34. PubMed ID: 11282650 [TBL] [Abstract][Full Text] [Related]
6. Microbial community structure of sandy intertidal sediments in the North Sea, Sylt-Rømø Basin, Wadden Sea. Musat N; Werner U; Knittel K; Kolb S; Dodenhof T; van Beusekom JE; de Beer D; Dubilier N; Amann R Syst Appl Microbiol; 2006 Jun; 29(4):333-48. PubMed ID: 16431068 [TBL] [Abstract][Full Text] [Related]
7. High overall diversity and dominance of microdiverse relationships in salt marsh sulphate-reducing bacteria. Klepac-Ceraj V; Bahr M; Crump BC; Teske AP; Hobbie JE; Polz MF Environ Microbiol; 2004 Jul; 6(7):686-98. PubMed ID: 15186347 [TBL] [Abstract][Full Text] [Related]
8. Phylogenetic affiliation and quantification of psychrophilic sulfate-reducing isolates in marine Arctic sediments. Sahm K; Knoblauch C; Amann R Appl Environ Microbiol; 1999 Sep; 65(9):3976-81. PubMed ID: 10473404 [TBL] [Abstract][Full Text] [Related]
9. Alkane biodegradation and dynamics of phylogenetic subgroups of sulfate-reducing bacteria in an anoxic coastal marine sediment artificially contaminated with oil. Miralles G; Grossi V; Acquaviva M; Duran R; Claude Bertrand J; Cuny P Chemosphere; 2007 Jul; 68(7):1327-34. PubMed ID: 17337033 [TBL] [Abstract][Full Text] [Related]
10. Quantitative molecular analysis of the microbial community in marine arctic sediments (Svalbard). Ravenschlag K; Sahm K; Amann R Appl Environ Microbiol; 2001 Jan; 67(1):387-95. PubMed ID: 11133470 [TBL] [Abstract][Full Text] [Related]
11. Seasonal changes in the relative abundance of uncultivated sulfate-reducing bacteria in a salt marsh sediment and in the rhizosphere of Spartina alterniflora. Rooney-Varga JN; Devereux R; Evans RS; Hines ME Appl Environ Microbiol; 1997 Oct; 63(10):3895-901. PubMed ID: 9327553 [TBL] [Abstract][Full Text] [Related]
12. A comparison of stable-isotope probing of DNA and phospholipid fatty acids to study prokaryotic functional diversity in sulfate-reducing marine sediment enrichment slurries. Webster G; Watt LC; Rinna J; Fry JC; Evershed RP; Parkes RJ; Weightman AJ Environ Microbiol; 2006 Sep; 8(9):1575-89. PubMed ID: 16913918 [TBL] [Abstract][Full Text] [Related]
13. Biogeochemical and molecular signatures of anaerobic methane oxidation in a marine sediment. Thomsen TR; Finster K; Ramsing NB Appl Environ Microbiol; 2001 Apr; 67(4):1646-56. PubMed ID: 11282617 [TBL] [Abstract][Full Text] [Related]
14. Analysis of diversity and activity of sulfate-reducing bacterial communities in sulfidogenic bioreactors using 16S rRNA and dsrB genes as molecular markers. Dar SA; Yao L; van Dongen U; Kuenen JG; Muyzer G Appl Environ Microbiol; 2007 Jan; 73(2):594-604. PubMed ID: 17098925 [TBL] [Abstract][Full Text] [Related]
15. Detection of abundant sulphate-reducing bacteria in marine oxic sediment layers by a combined cultivation and molecular approach. Wieringa EB; Overmann J; Cypionka H Environ Microbiol; 2000 Aug; 2(4):417-27. PubMed ID: 11234930 [TBL] [Abstract][Full Text] [Related]
16. Sulfate-reducing bacteria in marine sediment (Aarhus Bay, Denmark): abundance and diversity related to geochemical zonation. Leloup J; Fossing H; Kohls K; Holmkvist L; Borowski C; Jørgensen BB Environ Microbiol; 2009 May; 11(5):1278-91. PubMed ID: 19220398 [TBL] [Abstract][Full Text] [Related]
17. The impact of temperature change on the activity and community composition of sulfate-reducing bacteria in arctic versus temperate marine sediments. Robador A; Brüchert V; Jørgensen BB Environ Microbiol; 2009 Jul; 11(7):1692-703. PubMed ID: 19292778 [TBL] [Abstract][Full Text] [Related]
18. Analysis of the sulfate-reducing bacterial and methanogenic archaeal populations in contrasting Antarctic sediments. Purdy KJ; Nedwell DB; Embley TM Appl Environ Microbiol; 2003 Jun; 69(6):3181-91. PubMed ID: 12788715 [TBL] [Abstract][Full Text] [Related]
19. Development of oligonucleotide probes and PCR primers for detecting phylogenetic subgroups of sulfate-reducing bacteria. Daly K; Sharp RJ; McCarthy AJ Microbiology (Reading); 2000 Jul; 146 ( Pt 7)():1693-1705. PubMed ID: 10878133 [TBL] [Abstract][Full Text] [Related]
20. Sulphate reduction and vertical distribution of sulphate-reducing bacteria quantified by rRNA slot-blot hybridization in a coastal marine sediment. Sahm K; MacGregor BJ; Jørgensen BB; Stahl DA Environ Microbiol; 1999 Feb; 1(1):65-74. PubMed ID: 11207719 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]