These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
287 related articles for article (PubMed ID: 10919825)
21. Successional development of sulfate-reducing bacterial populations and their activities in a wastewater biofilm growing under microaerophilic conditions. Ito T; Okabe S; Satoh H; Watanabe Y Appl Environ Microbiol; 2002 Mar; 68(3):1392-402. PubMed ID: 11872492 [TBL] [Abstract][Full Text] [Related]
22. Identification of the dominant sulfate-reducing bacterial partner of anaerobic methanotrophs of the ANME-2 clade. Schreiber L; Holler T; Knittel K; Meyerdierks A; Amann R Environ Microbiol; 2010 Aug; 12(8):2327-40. PubMed ID: 21966923 [TBL] [Abstract][Full Text] [Related]
23. Sulfate-reducing bacteria methylate mercury at variable rates in pure culture and in marine sediments. King JK; Kostka JE; Frischer ME; Saunders FM Appl Environ Microbiol; 2000 Jun; 66(6):2430-7. PubMed ID: 10831421 [TBL] [Abstract][Full Text] [Related]
24. The distribution and activity of sulphate reducing bacteria in estuarine and coastal marine sediments. Purdy KJ; Embley TM; Nedwell DB Antonie Van Leeuwenhoek; 2002 Aug; 81(1-4):181-7. PubMed ID: 12448716 [TBL] [Abstract][Full Text] [Related]
25. Molecular and microscopic identification of sulfate-reducing bacteria in multispecies biofilms. Amann RI; Stromley J; Devereux R; Key R; Stahl DA Appl Environ Microbiol; 1992 Feb; 58(2):614-23. PubMed ID: 1376982 [TBL] [Abstract][Full Text] [Related]
26. [Activity and structure of the sulfate-reducing bacterial community in the sediments of the southern part of Lake Baikal]. Pimenov NV; Zakharova EE; Briukhanov AL; Korneeva VA; Kuznetsov BB; Turova TP; Pogodaeva TV; Kalmychkov GV; Zemskaia TI Mikrobiologiia; 2014; 83(2):180-90. PubMed ID: 25423722 [TBL] [Abstract][Full Text] [Related]
27. Phylogenetic identification and substrate uptake patterns of sulfate-reducing bacteria inhabiting an oxic-anoxic sewer biofilm determined by combining microautoradiography and fluorescent in situ hybridization. Ito T; Nielsen JL; Okabe S; Watanabe Y; Nielsen PH Appl Environ Microbiol; 2002 Jan; 68(1):356-64. PubMed ID: 11772645 [TBL] [Abstract][Full Text] [Related]
28. Spatial-Temporal Pattern of Sulfate-Dependent Anaerobic Methane Oxidation in an Intertidal Zone of the East China Sea. Wang J; Hua M; Cai C; Hu J; Wang J; Yang H; Ma F; Qian H; Zheng P; Hu B Appl Environ Microbiol; 2019 Apr; 85(7):. PubMed ID: 30709818 [TBL] [Abstract][Full Text] [Related]
29. Bioturbation of peanut worms Sipunculus nudus on the composition of prokaryotic communities in a tidal flat as revealed by 16S rRNA gene sequences. Li J; Hu R; Guo Y; Chen S; Xie X; Qin JG; Ma Z; Zhu C; Pei S Microbiologyopen; 2019 Aug; 8(8):e00802. PubMed ID: 30734523 [TBL] [Abstract][Full Text] [Related]
30. Desulfotomaculum arcticum sp. nov., a novel spore-forming, moderately thermophilic, sulfate-reducing bacterium isolated from a permanently cold fjord sediment of Svalbard. Vandieken V; Knoblauch C; Jørgensen BB Int J Syst Evol Microbiol; 2006 Apr; 56(Pt 4):687-690. PubMed ID: 16585677 [TBL] [Abstract][Full Text] [Related]
31. Identification of population dynamics in sulfate-reducing consortia on exposure to sulfate. Icgen B; Harrison S Res Microbiol; 2006 Dec; 157(10):922-7. PubMed ID: 17008063 [TBL] [Abstract][Full Text] [Related]
32. Whole-cell versus total RNA extraction for analysis of microbial community structure with 16S rRNA-targeted oligonucleotide probes in salt marsh sediments. Frischer ME; Danforth JM; Newton Healy MA; Saunders FM Appl Environ Microbiol; 2000 Jul; 66(7):3037-43. PubMed ID: 10877803 [TBL] [Abstract][Full Text] [Related]
33. Structure of microbial communities and hydrocarbon-dependent sulfate reduction in the anoxic layer of a polluted microbial mat. Abed RM; Musat N; Musat F; Mussmann M Mar Pollut Bull; 2011 Mar; 62(3):539-46. PubMed ID: 21194714 [TBL] [Abstract][Full Text] [Related]
34. Diversity and abundance of sulfate-reducing microorganisms in the sulfate and methane zones of a marine sediment, Black Sea. Leloup J; Loy A; Knab NJ; Borowski C; Wagner M; Jørgensen BB Environ Microbiol; 2007 Jan; 9(1):131-42. PubMed ID: 17227418 [TBL] [Abstract][Full Text] [Related]
35. Exposure to sulfide causes populations shifts in sulfate-reducing consortia. Icgen B; Harrison S Res Microbiol; 2006 Oct; 157(8):784-91. PubMed ID: 16814989 [TBL] [Abstract][Full Text] [Related]
36. Vertical distribution of major sulfate-reducing bacteria in a shallow eutrophic meromictic lake. Kubo K; Kojima H; Fukui M Syst Appl Microbiol; 2014 Oct; 37(7):510-9. PubMed ID: 25034383 [TBL] [Abstract][Full Text] [Related]
37. Vertical distribution and diversity of sulfate-reducing prokaryotes in the Pearl River estuarine sediments, Southern China. Jiang L; Zheng Y; Peng X; Zhou H; Zhang C; Xiao X; Wang F FEMS Microbiol Ecol; 2009 Nov; 70(2):93-106. PubMed ID: 19744241 [TBL] [Abstract][Full Text] [Related]