These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 10920028)

  • 1. A study on the mechanism of the proton transport in bacteriorhodopsin: the importance of the water molecule.
    Murata K; Fujii Y; Enomoto N; Hata M; Hoshino T; Tsuda M
    Biophys J; 2000 Aug; 79(2):982-91. PubMed ID: 10920028
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Computational analysis of the proton translocation from Asp96 to schiff base in bacteriorhodopsin.
    Sato Y; Hata M; Neya S; Hoshino T
    J Phys Chem B; 2006 Nov; 110(45):22804-12. PubMed ID: 17092031
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Suppression of the back proton-transfer from Asp85 to the retinal Schiff base in bacteriorhodopsin: a theoretical analysis of structural elements.
    Bondar AN; Suhai S; Fischer S; Smith JC; Elstner M
    J Struct Biol; 2007 Mar; 157(3):454-69. PubMed ID: 17189704
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Crystallographic structures of the M and N intermediates of bacteriorhodopsin: assembly of a hydrogen-bonded chain of water molecules between Asp-96 and the retinal Schiff base.
    Schobert B; Brown LS; Lanyi JK
    J Mol Biol; 2003 Jul; 330(3):553-70. PubMed ID: 12842471
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proton transfer pathways in bacteriorhodopsin at 2.3 angstrom resolution.
    Luecke H; Richter HT; Lanyi JK
    Science; 1998 Jun; 280(5371):1934-7. PubMed ID: 9632391
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional interactions in bacteriorhodopsin: a theoretical analysis of retinal hydrogen bonding with water.
    Nina M; Roux B; Smith JC
    Biophys J; 1995 Jan; 68(1):25-39. PubMed ID: 7711248
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interaction of aspartate-85 with a water molecule and the protonated Schiff base in the L intermediate of bacteriorhodopsin: a Fourier-transform infrared spectroscopic study.
    Maeda A; Sasaki J; Yamazaki Y; Needleman R; Lanyi JK
    Biochemistry; 1994 Feb; 33(7):1713-7. PubMed ID: 8110773
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The retinal Schiff base-counterion complex of bacteriorhodopsin: changed geometry during the photocycle is a cause of proton transfer to aspartate 85.
    Brown LS; Gat Y; Sheves M; Yamazaki Y; Maeda A; Needleman R; Lanyi JK
    Biochemistry; 1994 Oct; 33(40):12001-11. PubMed ID: 7918419
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Local-access model for proton transfer in bacteriorhodopsin.
    Brown LS; Dioumaev AK; Needleman R; Lanyi JK
    Biochemistry; 1998 Mar; 37(11):3982-93. PubMed ID: 9521720
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural changes of water in the Schiff base region of bacteriorhodopsin: proposal of a hydration switch model.
    Tanimoto T; Furutani Y; Kandori H
    Biochemistry; 2003 Mar; 42(8):2300-6. PubMed ID: 12600197
    [TBL] [Abstract][Full Text] [Related]  

  • 11. pKa of the protonated Schiff base and aspartic 85 in the bacteriorhodopsin binding site is controlled by a specific geometry between the two residues.
    Rousso I; Friedman N; Sheves M; Ottolenghi M
    Biochemistry; 1995 Sep; 34(37):12059-65. PubMed ID: 7547944
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Calculation of proton transfers in Bacteriorhodopsin bR and M intermediates.
    Song Y; Mao J; Gunner MR
    Biochemistry; 2003 Aug; 42(33):9875-88. PubMed ID: 12924936
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evidence for a bound water molecule next to the retinal Schiff base in bacteriorhodopsin and rhodopsin: a resonance Raman study of the Schiff base hydrogen/deuterium exchange.
    Deng H; Huang L; Callender R; Ebrey T
    Biophys J; 1994 Apr; 66(4):1129-36. PubMed ID: 8038384
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Existence of a proton transfer chain in bacteriorhodopsin: participation of Glu-194 in the release of protons to the extracellular surface.
    Dioumaev AK; Richter HT; Brown LS; Tanio M; Tuzi S; Saito H; Kimura Y; Needleman R; Lanyi JK
    Biochemistry; 1998 Feb; 37(8):2496-506. PubMed ID: 9485398
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Halide binding by the D212N mutant of Bacteriorhodopsin affects hydrogen bonding of water in the active site.
    Shibata M; Yoshitsugu M; Mizuide N; Ihara K; Kandori H
    Biochemistry; 2007 Jun; 46(25):7525-35. PubMed ID: 17547422
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A linkage of the pKa's of asp-85 and glu-204 forms part of the reprotonation switch of bacteriorhodopsin.
    Richter HT; Brown LS; Needleman R; Lanyi JK
    Biochemistry; 1996 Apr; 35(13):4054-62. PubMed ID: 8672439
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Understanding structure and function in the light-driven proton pump bacteriorhodopsin.
    Lanyi JK
    J Struct Biol; 1998 Dec; 124(2-3):164-78. PubMed ID: 10049804
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of protein-bound water molecules in microbial rhodopsins.
    Gerwert K; Freier E; Wolf S
    Biochim Biophys Acta; 2014 May; 1837(5):606-13. PubMed ID: 24055285
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydration switch model for the proton transfer in the Schiff base region of bacteriorhodopsin.
    Kandori H
    Biochim Biophys Acta; 2004 Jul; 1658(1-2):72-9. PubMed ID: 15282177
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A role for internal water molecules in proton affinity changes in the Schiff base and Asp85 for one-way proton transfer in bacteriorhodopsin.
    Morgan JE; Gennis RB; Maeda A
    Photochem Photobiol; 2008; 84(4):1038-45. PubMed ID: 18557823
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.