These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 10921854)

  • 61. Dispersions of nanoclays of different shapes into aqueous and solid biopolymeric matrices. Extended physicochemical study.
    Cavallaro G; Lazzara G; Milioto S
    Langmuir; 2011 Feb; 27(3):1158-67. PubMed ID: 21188987
    [TBL] [Abstract][Full Text] [Related]  

  • 62. On the confocal images and the rheology of whey protein isolated and modified pectins associated complex.
    Lutz R; Aserin A; Portnoy Y; Gottlieb M; Garti N
    Colloids Surf B Biointerfaces; 2009 Feb; 69(1):43-50. PubMed ID: 19070469
    [TBL] [Abstract][Full Text] [Related]  

  • 63. The structure of the complex between rubisco and its natural substrate ribulose 1,5-bisphosphate.
    Taylor TC; Andersson I
    J Mol Biol; 1997 Jan; 265(4):432-44. PubMed ID: 9034362
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Preparation and characterization of in situ ionic cross-linked pectin films: unique biodegradable polymers.
    Penhasi A; Meidan VM
    Carbohydr Polym; 2014 Feb; 102():254-60. PubMed ID: 24507280
    [TBL] [Abstract][Full Text] [Related]  

  • 65. β-Lactoglobulin nanofibrils can be assembled into nanotapes via site-specific interactions with pectin.
    Hettiarachchi CA; Melton LD; McGillivray DJ; Loveday SM; Gerrard JA; Williams MA
    Soft Matter; 2016 Jan; 12(3):756-68. PubMed ID: 26517088
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Altered intersubunit interactions in crystal structures of catalytically compromised ribulose-1,5-bisphosphate carboxylase/oxygenase.
    Karkehabadi S; Taylor TC; Spreitzer RJ; Andersson I
    Biochemistry; 2005 Jan; 44(1):113-20. PubMed ID: 15628851
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Mesoscopic structure of pectin in solution.
    Alba K; Bingham RJ; Kontogiorgos V
    Biopolymers; 2017 Jun; 107(6):. PubMed ID: 28142189
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Spatial structure and composition of polysaccharide-protein complexes from small angle neutron scattering.
    Schmidt I; Cousin F; Huchon C; Boué F; Axelos MA
    Biomacromolecules; 2009 Jun; 10(6):1346-57. PubMed ID: 19425547
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Effect of the degree of esterification and blockiness on the complex coacervation of pea protein isolate and commercial pectic polysaccharides.
    Warnakulasuriya S; Pillai PKS; Stone AK; Nickerson MT
    Food Chem; 2018 Oct; 264():180-188. PubMed ID: 29853364
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Characterization of biopolymeric flocculant (pectin) and organic synthetic flocculant (PAM): a comparative study on treatment and optimization in kaolin suspension.
    Ho YC; Norli I; Alkarkhi AF; Morad N
    Bioresour Technol; 2010 Feb; 101(4):1166-74. PubMed ID: 19854044
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Identification of Interactions between Abscisic Acid and Ribulose-1,5-Bisphosphate Carboxylase/Oxygenase.
    Galka MM; Rajagopalan N; Buhrow LM; Nelson KM; Switala J; Cutler AJ; Palmer DR; Loewen PC; Abrams SR; Loewen MC
    PLoS One; 2015; 10(7):e0133033. PubMed ID: 26197050
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Enzymatic modification of pectin to increase its calcium sensitivity while preserving its molecular weight.
    Hotchkiss AT; Savary BJ; Cameron RG; Chau HK; Brouillette J; Luzio GA; Fishman ML
    J Agric Food Chem; 2002 May; 50(10):2931-7. PubMed ID: 11982422
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Biochemical characteristics and gelling capacity of pectin from yellow passion fruit rind as affected by acid extractant nature.
    Yapo BM
    J Agric Food Chem; 2009 Feb; 57(4):1572-8. PubMed ID: 19199593
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Ribulose bisphosphate carboxylase/oxygenase in toluene-permeabilized Rhodospirillum rubrum.
    Storrø I; McFadden BA
    Biochem J; 1983 Apr; 212(1):45-54. PubMed ID: 6409101
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Structural framework for catalysis and regulation in ribulose-1,5-bisphosphate carboxylase/oxygenase.
    Andersson I; Taylor TC
    Arch Biochem Biophys; 2003 Jun; 414(2):130-40. PubMed ID: 12781764
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Immobilization of pectin fragments on solid supports: novel coupling by thiazolidine formation.
    Guillaumie F; Thomas OR; Jensen KJ
    Bioconjug Chem; 2002; 13(2):285-94. PubMed ID: 11906266
    [TBL] [Abstract][Full Text] [Related]  

  • 77. ATP and magnesium promote cotton short-form ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) activase hexamer formation at low micromolar concentrations.
    Kuriata AM; Chakraborty M; Henderson JN; Hazra S; Serban AJ; Pham TV; Levitus M; Wachter RM
    Biochemistry; 2014 Nov; 53(46):7232-46. PubMed ID: 25357088
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Effect of ultrasonic intensity on the conformational changes in citrus pectin under ultrasonic processing.
    Qiu WY; Cai WD; Wang M; Yan JK
    Food Chem; 2019 Nov; 297():125021. PubMed ID: 31253338
    [TBL] [Abstract][Full Text] [Related]  

  • 79. The life of ribulose 1,5-bisphosphate carboxylase/oxygenase--posttranslational facts and mysteries.
    Houtz RL; Portis AR
    Arch Biochem Biophys; 2003 Jun; 414(2):150-8. PubMed ID: 12781766
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Analysis and optimization of flocculation activity and turbidity reduction in kaolin suspension using pectin as a biopolymer flocculant.
    Ho YC; Norli I; Alkarkhi AF; Morad N
    Water Sci Technol; 2009; 60(3):771-81. PubMed ID: 19657173
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.