These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 10922007)

  • 1. Sarcomeric Ca2+ gradients during activation of frog skeletal muscle fibres imaged with confocal and two-photon microscopy.
    Hollingworth S; Soeller C; Baylor SM; Cannell MB
    J Physiol; 2000 Aug; 526 Pt 3(Pt 3):551-60. PubMed ID: 10922007
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Model of sarcomeric Ca2+ movements, including ATP Ca2+ binding and diffusion, during activation of frog skeletal muscle.
    Baylor SM; Hollingworth S
    J Gen Physiol; 1998 Sep; 112(3):297-316. PubMed ID: 9725890
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simulation of Ca2+ movements within the sarcomere of fast-twitch mouse fibers stimulated by action potentials.
    Baylor SM; Hollingworth S
    J Gen Physiol; 2007 Sep; 130(3):283-302. PubMed ID: 17724162
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 'In situ' high pressure confocal Ca(2+)-fluorescence microscopy in skeletal muscle: a new method to study pressure limits in mammalian cells.
    Friedrich O; Wegner FV; Hartmann M; Frey B; Sommer K; Ludwig H; Fink RH
    Undersea Hyperb Med; 2006; 33(3):181-95. PubMed ID: 16869532
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Variation in myoplasmic Ca2+ concentration during contraction and relaxation studied by the indicator fluo-3 in frog muscle fibres.
    Caputo C; Edman KA; Lou F; Sun YB
    J Physiol; 1994 Jul; 478 ( Pt 1)(Pt 1):137-48. PubMed ID: 7965829
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Local calcium release in mammalian skeletal muscle.
    Shirokova N; García J; Ríos E
    J Physiol; 1998 Oct; 512 ( Pt 2)(Pt 2):377-84. PubMed ID: 9763628
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fast calcium removal during single twitches in amphibian skeletal muscle fibres.
    Caputo C; Bolaños P; Escobar AL
    J Muscle Res Cell Motil; 1999 Aug; 20(5-6):555-67. PubMed ID: 10555074
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Imaging elementary events of calcium release in skeletal muscle cells.
    Tsugorka A; Ríos E; Blatter LA
    Science; 1995 Sep; 269(5231):1723-6. PubMed ID: 7569901
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Ca2+]i following extrasystoles in guinea-pig trabeculae microinjected with fluo-3 - a comparison with frog skeletal muscle fibres.
    Wohlfart B
    Acta Physiol Scand; 2000 May; 169(1):1-11. PubMed ID: 10759605
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Numerical simulation of Ca2+ "sparks" in skeletal muscle.
    Jiang YH; Klein MG; Schneider MF
    Biophys J; 1999 Nov; 77(5):2333-57. PubMed ID: 10545338
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Expression of ryanodine receptor RyR3 produces Ca2+ sparks in dyspedic myotubes.
    Ward CW; Schneider MF; Castillo D; Protasi F; Wang Y; Chen SR; Allen PD
    J Physiol; 2000 May; 525 Pt 1(Pt 1):91-103. PubMed ID: 10811728
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of calsequestrin evaluated from changes in free and total calcium concentrations in the sarcoplasmic reticulum of frog cut skeletal muscle fibres.
    Pape PC; Fénelon K; Lamboley CR; Stachura D
    J Physiol; 2007 May; 581(Pt 1):319-67. PubMed ID: 17331996
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intrasarcomere [Ca2+] gradients and their spatio-temporal relation to Ca2+ sparks in rat cardiomyocytes.
    Tanaka H; Sekine T; Kawanishi T; Nakamura R; Shigenobu K
    J Physiol; 1998 Apr; 508 ( Pt 1)(Pt 1):145-52. PubMed ID: 9490830
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sarcoplasmic reticulum calcium release compared in slow-twitch and fast-twitch fibres of mouse muscle.
    Baylor SM; Hollingworth S
    J Physiol; 2003 Aug; 551(Pt 1):125-38. PubMed ID: 12813151
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of the calcium release domains during excitation-contraction coupling in skeletal muscle fibres.
    DiFranco M; Novo D; Vergara JL
    Pflugers Arch; 2002 Feb; 443(4):508-19. PubMed ID: 11907817
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fast imaging in two dimensions resolves extensive sources of Ca2+ sparks in frog skeletal muscle.
    Brum G; González A; Rengifo J; Shirokova N; Ríos E
    J Physiol; 2000 Nov; 528(Pt 3):419-33. PubMed ID: 11060121
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Resting myoplasmic free calcium in frog skeletal muscle fibers estimated with fluo-3.
    Harkins AB; Kurebayashi N; Baylor SM
    Biophys J; 1993 Aug; 65(2):865-81. PubMed ID: 8218910
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Calcium release and sarcoplasmic reticulum membrane potential in frog skeletal muscle fibres.
    Baylor SM; Chandler WK; Marshall MW
    J Physiol; 1984 Mar; 348():209-38. PubMed ID: 6716284
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of length on the relationship between tension and intracellular [Ca2+] in intact frog skeletal muscle fibres.
    Claflin DR; Morgan DL; Julian FJ
    J Physiol; 1998 Apr; 508 ( Pt 1)(Pt 1):179-86. PubMed ID: 9490836
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Localization of the site of Ca2+ release at the level of a single sarcomere in skeletal muscle fibres.
    Escobar AL; Monck JR; Fernandez JM; Vergara JL
    Nature; 1994 Feb; 367(6465):739-41. PubMed ID: 8107869
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.