These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 10922007)

  • 21. Repriming and activation alter the frequency of stereotyped discrete Ca2+ release events in frog skeletal muscle.
    Lacampagne A; Lederer WJ; Schneider MF; Klein MG
    J Physiol; 1996 Dec; 497 ( Pt 3)(Pt 3):581-8. PubMed ID: 9003545
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Spatiotemporal features of Ca2+ buffering and diffusion in atrial cardiac myocytes with inhibited sarcoplasmic reticulum.
    Michailova A; DelPrincipe F; Egger M; Niggli E
    Biophys J; 2002 Dec; 83(6):3134-51. PubMed ID: 12496084
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The use of the indicator fluo-5N to measure sarcoplasmic reticulum calcium in single muscle fibres of the cane toad.
    Kabbara AA; Allen DG
    J Physiol; 2001 Jul; 534(Pt 1):87-97. PubMed ID: 11432994
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Confocal imaging of [Ca2+] in cellular organelles by SEER, shifted excitation and emission ratioing of fluorescence.
    Launikonis BS; Zhou J; Royer L; Shannon TR; Brum G; Ríos E
    J Physiol; 2005 Sep; 567(Pt 2):523-43. PubMed ID: 15946962
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Valinomycin and excitation-contraction coupling in skeletal muscle fibres of the frog.
    Pape PC; Konishi M; Baylor SM
    J Physiol; 1992 Apr; 449():219-35. PubMed ID: 1326044
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Multimodal SHG-2PF Imaging of Microdomain Ca2+-Contraction Coupling in Live Cardiac Myocytes.
    Awasthi S; Izu LT; Mao Z; Jian Z; Landas T; Lerner A; Shimkunas R; Woldeyesus R; Bossuyt J; Wood BM; Chen YJ; Matthews DL; Lieu DK; Chiamvimonvat N; Lam KS; Chen-Izu Y; Chan JW
    Circ Res; 2016 Jan; 118(2):e19-28. PubMed ID: 26643875
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The relationship between the intracellular Ca2+ transient and the isometric twitch force in frog muscle fibres.
    Sun YB; Lou F; Edman KA
    Exp Physiol; 1996 Sep; 81(5):711-24. PubMed ID: 8889472
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Model of calcium movements during activation in the sarcomere of frog skeletal muscle.
    Cannell MB; Allen DG
    Biophys J; 1984 May; 45(5):913-25. PubMed ID: 6733242
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Intrasarcomere [Ca2+] gradients in ventricular myocytes revealed by high speed digital imaging microscopy.
    Isenberg G; Etter EF; Wendt-Gallitelli MF; Schiefer A; Carrington WA; Tuft RA; Fay FS
    Proc Natl Acad Sci U S A; 1996 May; 93(11):5413-8. PubMed ID: 8643589
    [TBL] [Abstract][Full Text] [Related]  

  • 30. ATPase kinetics on activation of rabbit and frog permeabilized isometric muscle fibres: a real time phosphate assay.
    He ZH; Chillingworth RK; Brune M; Corrie JE; Trentham DR; Webb MR; Ferenczi MA
    J Physiol; 1997 May; 501 ( Pt 1)(Pt 1):125-48. PubMed ID: 9174999
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Calcium concentration and movement in the ventricular cardiac cell during an excitation-contraction cycle.
    Peskoff A; Langer GA
    Biophys J; 1998 Jan; 74(1):153-74. PubMed ID: 9449319
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A simple numerical model of calcium spark formation and detection in cardiac myocytes.
    Smith GD; Keizer JE; Stern MD; Lederer WJ; Cheng H
    Biophys J; 1998 Jul; 75(1):15-32. PubMed ID: 9649364
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Spatiotemporal regulation of ATP and Ca2+ dynamics in vertebrate rod and cone ribbon synapses.
    Johnson JE; Perkins GA; Giddabasappa A; Chaney S; Xiao W; White AD; Brown JM; Waggoner J; Ellisman MH; Fox DA
    Mol Vis; 2007 Jun; 13():887-919. PubMed ID: 17653034
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Time course of individual Ca2+ sparks in frog skeletal muscle recorded at high time resolution.
    Lacampagne A; Ward CW; Klein MG; Schneider MF
    J Gen Physiol; 1999 Feb; 113(2):187-98. PubMed ID: 9925818
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Calcium transients in single mammalian skeletal muscle fibres.
    Delbono O; Stefani E
    J Physiol; 1993 Apr; 463():689-707. PubMed ID: 8246201
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Distribution of sarcomere length and intracellular calcium in mouse skeletal muscle following stretch-induced injury.
    Balnave CD; Davey DF; Allen DG
    J Physiol; 1997 Aug; 502 ( Pt 3)(Pt 3):649-59. PubMed ID: 9279815
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effects of intracellular ruthenium red on excitation-contraction coupling in intact frog skeletal muscle fibres.
    Baylor SM; Hollingworth S; Marshall MW
    J Physiol; 1989 Jan; 408():617-35. PubMed ID: 2476559
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of caffeine on intracellular calcium concentrations in frog skeletal muscle fibres.
    Konishi M; Kurihara S
    J Physiol; 1987 Feb; 383():269-83. PubMed ID: 3498820
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The role of ATP in the regulation of intracellular Ca2+ release in single fibres of mouse skeletal muscle.
    Allen DG; Lännergren J; Westerblad H
    J Physiol; 1997 Feb; 498 ( Pt 3)(Pt 3):587-600. PubMed ID: 9051572
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The intracellular Ca2+ transient and tension in frog skeletal muscle fibres measured with high temporal resolution.
    Claflin DR; Morgan DL; Stephenson DG; Julian FJ
    J Physiol; 1994 Mar; 475(2):319-25. PubMed ID: 8021837
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.