These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 10923073)
21. Effects of membrane potential on electrically silent transport. Potential-independent translocation and asymmetric potential-dependent substrate binding to the red blood cell anion exchange protein. Jennings ML; Schulz RK; Allen M J Gen Physiol; 1990 Nov; 96(5):991-1012. PubMed ID: 2280255 [TBL] [Abstract][Full Text] [Related]
22. Control of cell pH in immature primitive red cells from chick embryo. Sieger U; Reinhardt C; Baumann R Comp Biochem Physiol Comp Physiol; 1993 Apr; 104(4):765-70. PubMed ID: 8097982 [TBL] [Abstract][Full Text] [Related]
23. The asymmetry of chloride transport at 38 degrees C in human red blood cell membranes. Knauf PA; Gasbjerg PK; Brahm J J Gen Physiol; 1996 Dec; 108(6):577-89. PubMed ID: 8972395 [TBL] [Abstract][Full Text] [Related]
24. Modification of a carboxyl group that appears to cross the permeability barrier in the red blood cell anion transporter. Jennings ML; Al-Rhaiyel S J Gen Physiol; 1988 Aug; 92(2):161-78. PubMed ID: 3171537 [TBL] [Abstract][Full Text] [Related]
25. Relationship of net chloride flow across the human erythrocyte membrane to the anion exchange mechanism. Knauf PA; Law FY; Marchant PJ J Gen Physiol; 1983 Jan; 81(1):95-126. PubMed ID: 6833998 [TBL] [Abstract][Full Text] [Related]
26. Roles of histidine 752 and glutamate 699 in the pH dependence of mouse band 3 protein-mediated anion transport. Müller-Berger S; Karbach D; Kang D; Aranibar N; Wood PG; Rüterjans H; Passow H Biochemistry; 1995 Jul; 34(29):9325-32. PubMed ID: 7626601 [TBL] [Abstract][Full Text] [Related]
27. Chloride-bicarbonate exchange in human red cells measured using a stopped flow apparatus. Lambert A; Lowe AG J Physiol; 1980 Sep; 306():431-43. PubMed ID: 7463368 [TBL] [Abstract][Full Text] [Related]
28. Kinetics of chloride-bicarbonate exchange across the human red blood cell membrane. Greco FA; Solomon AK J Membr Biol; 1997 Oct; 159(3):197-208. PubMed ID: 9312209 [TBL] [Abstract][Full Text] [Related]
29. The chloride transport induced by triaklyl-tin compound across erythrocyte membrane. Motais R; Cousin JL; Sola F Biochim Biophys Acta; 1977 Jun; 467(3):357-63. PubMed ID: 884076 [TBL] [Abstract][Full Text] [Related]
30. A novel rapid-reaction spectrophotometric method for monitoring monovalent anion exchange by human erythrocyte band 3. Salhany JM Biochem Mol Biol Int; 1998 Jun; 45(1):181-90. PubMed ID: 9635142 [TBL] [Abstract][Full Text] [Related]
31. Transmembrane Ca2+ gradient is essential for high anion transport activity of human erythrocytes. Tu YP; Feng C; Xu H; Guang ZY; Lu QW; Yang FY Biosci Rep; 1996 Aug; 16(4):299-311. PubMed ID: 8896789 [TBL] [Abstract][Full Text] [Related]
32. On the water and proton permeabilities across membranes from erythrocyte ghosts. Pitterich H; Lawaczeck R Biochim Biophys Acta; 1985 Dec; 821(2):233-42. PubMed ID: 2998468 [TBL] [Abstract][Full Text] [Related]
33. The carboxyl side chain of glutamate 681 interacts with a chloride binding modifier site that allosterically modulates the dimeric conformational state of band 3 (AE1). Implications for the mechanism of anion/proton cotransport. Salhany JM; Sloan RL; Cordes KS Biochemistry; 2003 Feb; 42(6):1589-602. PubMed ID: 12578372 [TBL] [Abstract][Full Text] [Related]
34. Kinetics of DIDS inhibition of HL-60 cell anion exchange rules out ping-pong model with slippage. Restrepo D; Cronise BL; Snyder RB; Spinelli LJ; Knauf PA Am J Physiol; 1991 Mar; 260(3 Pt 1):C535-44. PubMed ID: 1848401 [TBL] [Abstract][Full Text] [Related]
35. Membrane chloride transport measured using a chloride-sensitive fluorescent probe. Illsley NP; Verkman AS Biochemistry; 1987 Mar; 26(5):1215-9. PubMed ID: 3567167 [TBL] [Abstract][Full Text] [Related]
36. Chloride conductance of the amphiuma red cell membrane. Lassen UV; Pape L; Vestergaard-Bogind B J Membr Biol; 1978 Feb; 39(1):27-48. PubMed ID: 24748 [TBL] [Abstract][Full Text] [Related]
37. Evidence that anion transport by band 3 proceeds via a ping-pong mechanism involving a single transport site. A 35 Cl NMR study. Falke JJ; Chan SI J Biol Chem; 1985 Aug; 260(17):9537-44. PubMed ID: 4019484 [TBL] [Abstract][Full Text] [Related]
38. Proton inhibition of chloride exchange: asynchrony of band 3 proton and anion transport sites? Milanick MA; Gunn RB Am J Physiol; 1986 Jun; 250(6 Pt 1):C955-69. PubMed ID: 3013020 [TBL] [Abstract][Full Text] [Related]
39. Substrate-dependent reversal of anion transport site orientation in the human red blood cell anion-exchange protein, AE1. Knauf PA; Law FY; Leung TW; Gehret AU; Perez ML Proc Natl Acad Sci U S A; 2002 Aug; 99(16):10861-4. PubMed ID: 12149479 [TBL] [Abstract][Full Text] [Related]
40. The binding of nitrate to the human anion exchange protein (AE1) studied with 14N nuclear magnetic resonance. Galanter WL; Labotka RJ Biochim Biophys Acta; 1991 Aug; 1079(2):146-51. PubMed ID: 1911837 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]