BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 1092341)

  • 21. Interaction of elongation factor 2 from wheat germ with guanosine nucleotides and ribosomes.
    Twardowski T; Legocki A
    Acta Biochim Pol; 1977; 24(1):21-33. PubMed ID: 194440
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ribosomes cannot interact simultaneously with elongation factors EF Tu and EF G.
    Richman N; Bodley JW
    Proc Natl Acad Sci U S A; 1972 Mar; 69(3):686-9. PubMed ID: 4551984
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Influence of guanine nucleotides and elongation factors on interaction of release factors with the ribosome.
    Tate WP; Beaudet AL; Caskey CT
    Proc Natl Acad Sci U S A; 1973 Aug; 70(8):2350-5. PubMed ID: 4525170
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Functional groups of elongation factor 2 involved in interactions with guanosine nucleotides and ribosomes.
    Nurten R; Aktar NB; Bermek E
    FEBS Lett; 1983 Apr; 154(2):391-4. PubMed ID: 6832378
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Properties of elongation factor G: its interaction with the ribosomal peptidyl-site.
    Chinali G; Parmeggiani A
    Biochem Biophys Res Commun; 1973 Sep; 54(1):33-9. PubMed ID: 4582381
    [No Abstract]   [Full Text] [Related]  

  • 26. Role of guanine nucleotides in protein synthesis. Elongation factor G and guanosine 5'-triphosphate,3'-diphosphate.
    Hamel E; Cashel M
    Proc Natl Acad Sci U S A; 1973 Nov; 70(11):3250-4. PubMed ID: 4594040
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Synergism between the GTPase activities of EF-Tu.GTP and EF-G.GTP on empty ribosomes. Elongation factors as stimulators of the ribosomal oscillation between two conformations.
    Mesters JR; Potapov AP; de Graaf JM; Kraal B
    J Mol Biol; 1994 Oct; 242(5):644-54. PubMed ID: 7932721
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Elongation factors EF Tu and EF G interact at related sites on ribosomes.
    Miller DL
    Proc Natl Acad Sci U S A; 1972 Mar; 69(3):752-5. PubMed ID: 4551986
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Binding of aminoacyl-tRNA to ribosomes promoted by elongation factor Tu. Studies on the role of GTP hydrolysis.
    Yokosawa H; Kawakita M; Arai K; Inoue-Yokosawa N; Kaziro Y
    J Biochem; 1975 Apr; 77(4):719-28. PubMed ID: 1097432
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Preparation of homogeneous elongation factor G and examination of the mechanism of guanosine triphosphate hydrolysis.
    Rohrbach MS; Dempsey ME; Bodley JW
    J Biol Chem; 1974 Aug; 249(16):5094-101. PubMed ID: 4604933
    [No Abstract]   [Full Text] [Related]  

  • 31. Pulvomycin, an inhibitor of protein biosynthesis preventing ternary complex formation between elongation factor Tu, GTP, and aminoacyl-tRNA.
    Wolf H; Assmann D; Fischer E
    Proc Natl Acad Sci U S A; 1978 Nov; 75(11):5324-8. PubMed ID: 364475
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Stabilization by the 30S ribosomal subunit of the interaction of 50S subunits with elongation factor G and guanine nucleotide.
    Marsh RC; Parmeggiani A
    Biochemistry; 1977 Apr; 16(7):1278-83. PubMed ID: 321016
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Interaction of guanine nucleotides with the signal recognition particle from Escherichia coli.
    Jagath JR; Rodnina MV; Lentzen G; Wintermeyer W
    Biochemistry; 1998 Nov; 37(44):15408-13. PubMed ID: 9799502
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Formation of a binary complex between elongation factor G and guanine nucleotides.
    Arai N; Arai K; Kaziro Y
    J Biochem; 1975 Jul; 78(1):243-6. PubMed ID: 1104601
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Steady state kinetic analysis of the mechanism of guanosine triphosphate hydrolysis catalyzed by Escherichia coli elongation factor G and the ribosome.
    Rohrback MS; Bodley JW
    Biochemistry; 1976 Oct; 15(21):4565-9. PubMed ID: 9976
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Resistance to fusidic acid in Escherichia coli mediated by the type I variant of chloramphenicol acetyltransferase. A plasmid-encoded mechanism involving antibiotic binding.
    Bennett AD; Shaw WV
    Biochem J; 1983 Oct; 215(1):29-38. PubMed ID: 6354181
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The accuracy of protein biosynthesis is limited by its speed: high fidelity selection by ribosomes of aminoacyl-tRNA ternary complexes containing GTP[gamma S].
    Thompson RC; Karim AM
    Proc Natl Acad Sci U S A; 1982 Aug; 79(16):4922-6. PubMed ID: 6750613
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Studies on the polypeptide elongation factor 2 from Sulfolobus solfataricus. Interaction with guanosine nucleotides and GTPase activity stimulated by ribosomes.
    Raimo G; Masullo M; Bocchini V
    J Biol Chem; 1995 Sep; 270(36):21082-5. PubMed ID: 7673137
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Requirement for GTP in the initiation process on reticulocyte ribosomes and ribosomal subunits.
    Shafritz DA; Laycock DG; Crystal RG; Anderson WF
    Proc Natl Acad Sci U S A; 1971 Sep; 68(9):2246-51. PubMed ID: 5289383
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effects of mutagenesis of Gln97 in the switch II region of Escherichia coli elongation factor Tu on its interaction with guanine nucleotides, elongation factor Ts, and aminoacyl-tRNA.
    Navratil T; Spremulli LL
    Biochemistry; 2003 Nov; 42(46):13587-95. PubMed ID: 14622005
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.