BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 10923832)

  • 1. Polymer-Supported dicyanoketene acetal as a pi-acid catalyst: monothioacetalization and carbon-carbon bond formation of acetals.
    Tanaka N; Miura T; Masaki Y
    Chem Pharm Bull (Tokyo); 2000 Jul; 48(7):1010-6. PubMed ID: 10923832
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Development of polymer-supported pi-acid catalysts].
    Masaki Y
    Yakugaku Zasshi; 2006 Jan; 126(1):1-26. PubMed ID: 16394646
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recyclable polymeric pi-acid catalyst effective on Mannich-type reaction in water.
    Masaki Y; Yamazaki K; Kawai H; Yamada T; Itoh A; Arai Y; Furukawa H
    Chem Pharm Bull (Tokyo); 2006 Apr; 54(4):591-3. PubMed ID: 16595974
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unusual carbon-carbon bond formations between allylboronates and acetals or ketals catalyzed by a peculiar indium(I) Lewis acid.
    Schneider U; Dao HT; Kobayashi S
    Org Lett; 2010 Jun; 12(11):2488-91. PubMed ID: 20462242
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reaction of acetals with various carbon nucleophiles under non-acidic conditions: C-C bond formation via a pyridinium-type salt.
    Fujioka H; Yahata K; Hamada T; Kubo O; Okitsu T; Sawama Y; Ohnaka T; Maegawa T; Kita Y
    Chem Asian J; 2012 Feb; 7(2):367-73. PubMed ID: 22162390
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Acetal-linked polymeric prodrug micelles for enhanced curcumin delivery.
    Li M; Gao M; Fu Y; Chen C; Meng X; Fan A; Kong D; Wang Z; Zhao Y
    Colloids Surf B Biointerfaces; 2016 Apr; 140():11-18. PubMed ID: 26731193
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Poly(ethylene glycol)-grafted cyclic acetals based polymer networks with non-water-swellable, biodegradable and surface hydrophilic properties.
    Yin R; Zhang N; Wu W; Wang K
    Mater Sci Eng C Mater Biol Appl; 2016 May; 62():137-43. PubMed ID: 26952407
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Catalytic asymmetric transacetalization.
    Corić I; Vellalath S; List B
    J Am Chem Soc; 2010 Jun; 132(25):8536-7. PubMed ID: 20527773
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Toward efficient asymmetric carbon-carbon bond formation: continuous flow with chiral heterogeneous catalysts.
    Tsubogo T; Yamashita Y; Kobayashi S
    Chemistry; 2012 Oct; 18(43):13624-8. PubMed ID: 22968991
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Catalytic enantioselective construction of all-carbon quaternary stereocenters: synthetic and mechanistic studies of the C-acylation of silyl ketene acetals.
    Mermerian AH; Fu GC
    J Am Chem Soc; 2005 Apr; 127(15):5604-7. PubMed ID: 15826199
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enol acetal synthesis through carbenoid C-H insertion into tetrahydrofuran catalyzed by CpRu complexes.
    Tortoreto C; Achard T; Zeghida W; Austeri M; Guénée L; Lacour J
    Angew Chem Int Ed Engl; 2012 Jun; 51(24):5847-51. PubMed ID: 22566283
    [No Abstract]   [Full Text] [Related]  

  • 12. Direct sp3 C-H amination of nitrogen-containing benzoheterocycles mediated by visible-light-photoredox catalysts.
    Miyake Y; Nakajima K; Nishibayashi Y
    Chemistry; 2012 Dec; 18(51):16473-7. PubMed ID: 23150225
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enantioselective protonation of α-hetero carboxylic acid-derived ketene disilyl acetals under chiral ionic Brønsted acid catalysis.
    Uraguchi D; Kizu T; Ohira Y; Ooi T
    Chem Commun (Camb); 2014 Nov; 50(88):13489-91. PubMed ID: 25234847
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deoxygenation of carbohydrates by thiol-catalysed radical-chain redox rearrangement of the derived benzylidene acetals.
    Dang HS; Roberts BP; Sekhon J; Smits TM
    Org Biomol Chem; 2003 Apr; 1(8):1330-41. PubMed ID: 12929663
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Use of an aminosilyllithium for the diastereoselective synthesis of diphenyl oxasilacyclopentane acetals and polyols.
    Tenenbaum JM; Woerpel KA
    Org Lett; 2003 Nov; 5(23):4325-7. PubMed ID: 14601991
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recyclable porous polymer-supported copper catalysts for Glaser and Huisgen 1,3-diolar cycloaddition reactions.
    Sun Q; Lv Z; Du Y; Wu Q; Wang L; Zhu L; Meng X; Chen W; Xiao FS
    Chem Asian J; 2013 Nov; 8(11):2822-7. PubMed ID: 23868753
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Organoiridium complexes: efficient catalysts for the formation of sugar acetals and ketals.
    Mandal S; Verma PR; Mukhopadhyay B; Gupta P
    Carbohydr Res; 2011 Sep; 346(13):2007-10. PubMed ID: 21632036
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Substituent Effects on the pH Sensitivity of Acetals and Ketals and Their Correlation with Encapsulation Stability in Polymeric Nanogels.
    Liu B; Thayumanavan S
    J Am Chem Soc; 2017 Feb; 139(6):2306-2317. PubMed ID: 28106385
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel photodegradable hyperbranched polymeric photoresist.
    Chatterjee S; Ramakrishnan S
    Chem Commun (Camb); 2013 Dec; 49(94):11041-3. PubMed ID: 24142040
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ring-Opening Polymerization of Cyclic Acetals: Strategy for both Recyclable and Degradable Materials.
    Shen T; Chen K; Chen Y; Ling J
    Macromol Rapid Commun; 2023 Jul; 44(13):e2300099. PubMed ID: 37020406
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.