These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 10923905)
21. Effects of different hydrostatic pressure on lesions in ex vivo bovine livers induced by high intensity focused ultrasound. He M; Zhong Z; Li X; Gong X; Wang Z; Li F Ultrason Sonochem; 2017 May; 36():36-41. PubMed ID: 28069221 [TBL] [Abstract][Full Text] [Related]
22. Spatial and temporal observation of phase-shift nano-emulsions assisted cavitation and ablation during focused ultrasound exposure. Qiao Y; Zong Y; Yin H; Chang N; Li Z; Wan M Ultrason Sonochem; 2014 Sep; 21(5):1745-51. PubMed ID: 24746925 [TBL] [Abstract][Full Text] [Related]
23. A real-time controller for sustaining thermally relevant acoustic cavitation during ultrasound therapy. Hockham N; Coussios CC; Arora M IEEE Trans Ultrason Ferroelectr Freq Control; 2010 Dec; 57(12):2685-94. PubMed ID: 21156364 [TBL] [Abstract][Full Text] [Related]
24. The inception of cavitation bubble clouds induced by high-intensity focused ultrasound. Chen H; Li X; Wan M Ultrasonics; 2006 Dec; 44 Suppl 1():e427-9. PubMed ID: 16782158 [TBL] [Abstract][Full Text] [Related]
25. Enhanced lesion-to-bubble ratio on ultrasonic Nakagami imaging for monitoring of high-intensity focused ultrasound. Zhang S; Li C; Zhou F; Wan M; Wang S J Ultrasound Med; 2014 Jun; 33(6):959-70. PubMed ID: 24866603 [TBL] [Abstract][Full Text] [Related]
26. Simulation of non-linear acoustic field and thermal pattern of phased-array high-intensity focused ultrasound (HIFU). Wang M; Zhou Y Int J Hyperthermia; 2016 Aug; 32(5):569-82. PubMed ID: 27145871 [TBL] [Abstract][Full Text] [Related]
27. Nakagami-m parametric imaging for characterization of thermal coagulation and cavitation erosion induced by HIFU. Han M; Wang N; Guo S; Chang N; Lu S; Wan M Ultrason Sonochem; 2018 Jul; 45():78-85. PubMed ID: 29705328 [TBL] [Abstract][Full Text] [Related]
28. Effect of acoustic parameters on the cavitation behavior of SonoVue microbubbles induced by pulsed ultrasound. Lin Y; Lin L; Cheng M; Jin L; Du L; Han T; Xu L; Yu ACH; Qin P Ultrason Sonochem; 2017 Mar; 35(Pt A):176-184. PubMed ID: 27707644 [TBL] [Abstract][Full Text] [Related]
29. Attenuation of porcine tissues in vivo after high-intensity ultrasound treatment. Zderic V; Keshavarzi A; Andrew MA; Vaezy S; Martin RW Ultrasound Med Biol; 2004 Jan; 30(1):61-6. PubMed ID: 14962609 [TBL] [Abstract][Full Text] [Related]
30. The correlation between bubble-enhanced HIFU heating and cavitation power. Farny CH; Glynn Holt R; Roy RA IEEE Trans Biomed Eng; 2010 Jan; 57(1):175-84. PubMed ID: 19651548 [TBL] [Abstract][Full Text] [Related]
31. Droplets, Bubbles and Ultrasound Interactions. Shpak O; Verweij M; de Jong N; Versluis M Adv Exp Med Biol; 2016; 880():157-74. PubMed ID: 26486337 [TBL] [Abstract][Full Text] [Related]
32. Effects of ultrasound pulse parameters on cavitation properties of flowing microbubbles under physiologically relevant conditions. Cheng M; Li F; Han T; Yu ACH; Qin P Ultrason Sonochem; 2019 Apr; 52():512-521. PubMed ID: 30642801 [TBL] [Abstract][Full Text] [Related]
33. Simulation of cavitation enhanced temperature elevation in a soft tissue during high-intensity focused ultrasound thermal therapy. Zilonova EM; Solovchuk M; Sheu TWH Ultrason Sonochem; 2019 May; 53():11-24. PubMed ID: 30770275 [TBL] [Abstract][Full Text] [Related]
34. Microbubble behavior in an ultrasound field for high intensity focused ultrasound therapy enhancement. Okita K; Sugiyama K; Takagi S; Matsumto Y J Acoust Soc Am; 2013 Aug; 134(2):1576-85. PubMed ID: 23927198 [TBL] [Abstract][Full Text] [Related]
35. Influence of temperature-dependent acoustic and thermal parameters and nonlinear harmonics on the prediction of thermal lesion under HIFU ablation. Dong H; Liu G; Tong X Math Biosci Eng; 2021 Jan; 18(2):1340-1351. PubMed ID: 33757188 [TBL] [Abstract][Full Text] [Related]
36. Morphometric analysis of high-intensity focused ultrasound-induced lipolysis on cadaveric abdominal and thigh skin. Lee S; Kim HJ; Park HJ; Kim HM; Lee SH; Cho SB Lasers Med Sci; 2017 Jul; 32(5):1143-1151. PubMed ID: 28451817 [TBL] [Abstract][Full Text] [Related]
37. Prevention of post-focal thermal damage by formation of bubbles at the focus during high intensity focused ultrasound therapy. Zderic V; Foley J; Luo W; Vaezy S Med Phys; 2008 Oct; 35(10):4292-9. PubMed ID: 18975674 [TBL] [Abstract][Full Text] [Related]
38. The effects of ultrasound pressure and temperature fields in millisecond bubble nucleation. de Andrade MO; Haqshenas SR; Pahk KJ; Saffari N Ultrason Sonochem; 2019 Jul; 55():262-272. PubMed ID: 30952547 [TBL] [Abstract][Full Text] [Related]
39. Low-intensity ultrasound induced cavitation and streaming in oxygen-supersaturated water: Role of cavitation bubbles as physical cleaning agents. Yamashita T; Ando K Ultrason Sonochem; 2019 Apr; 52():268-279. PubMed ID: 30573434 [TBL] [Abstract][Full Text] [Related]
40. High-speed observation of bubble cloud generation near a rigid wall by second-harmonic superimposed ultrasound. Yoshizawa S; Yasuda J; Umemura S J Acoust Soc Am; 2013 Aug; 134(2):1515-20. PubMed ID: 23927191 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]