These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 10923905)
41. Ultrasound wave propagation in tissue and scattering from microbubbles for echo particle image velocimetry technique. Mukdadi O; Shandas R Biomed Sci Instrum; 2004; 40():364-70. PubMed ID: 15133985 [TBL] [Abstract][Full Text] [Related]
42. High-intensity focused ultrasound monitoring using harmonic motion imaging for focused ultrasound (HMIFU) under boiling or slow denaturation conditions. Hou GY; Marquet F; Wang S; Apostolakis IZ; Konofagou EE IEEE Trans Ultrason Ferroelectr Freq Control; 2015 Jul; 62(7):1308-19. PubMed ID: 26168177 [TBL] [Abstract][Full Text] [Related]
43. Combination of thermal and cavitation effects to generate deep lesions with an endocavitary applicator using a plane transducer: ex vivo studies. Melodelima D; Chapelon JY; Theillère Y; Cathignol D Ultrasound Med Biol; 2004 Jan; 30(1):103-11. PubMed ID: 14962614 [TBL] [Abstract][Full Text] [Related]
44. Acoustic Droplet Vaporization for the Enhancement of Ultrasound Thermal Therapy. Zhang M; Fabiilli M; Carson P; Padilla F; Swanson S; Kripfgans O; Fowlkes B Proc IEEE Ultrason Symp; 2010 Oct; 2010():221-224. PubMed ID: 21804749 [TBL] [Abstract][Full Text] [Related]
45. Photoacoustic detection and optical spectroscopy of high-intensity focused ultrasound-induced thermal lesions in biologic tissue. Alhamami M; Kolios MC; Tavakkoli J Med Phys; 2014 May; 41(5):053502. PubMed ID: 24784408 [TBL] [Abstract][Full Text] [Related]
46. Prediction of high-intensity focused ultrasound (HIFU)-induced lesion size using the echo amplitude from the focus in tissue. Zhou Y; Gong X; You Y Phys Eng Sci Med; 2024 Dec; 47(4):1349-1359. PubMed ID: 38822970 [TBL] [Abstract][Full Text] [Related]
47. Bubble dynamics and size distributions during focused ultrasound insonation. Yang X; Roy RA; Holt RG J Acoust Soc Am; 2004 Dec; 116(6):3423-31. PubMed ID: 15658693 [TBL] [Abstract][Full Text] [Related]
48. A novel method for estimating the focal size of two confocal high-intensity focused ultrasound transducers. Chen WS; Ma PM; Liu HL; Yeh CK; Chen MS; Chang CW J Acoust Soc Am; 2005 Jun; 117(6):3740-9. PubMed ID: 16018477 [TBL] [Abstract][Full Text] [Related]
49. Effects of nonlinear propagation, cavitation, and boiling in lesion formation by high intensity focused ultrasound in a gel phantom. Khokhlova VA; Bailey MR; Reed JA; Cunitz BW; Kaczkowski PJ; Crum LA J Acoust Soc Am; 2006 Mar; 119(3):1834-48. PubMed ID: 16583923 [TBL] [Abstract][Full Text] [Related]
50. Spatial specificity and sensitivity of passive cavitation imaging for monitoring high-intensity focused ultrasound thermal ablation in ex vivo bovine liver. Haworth K; Salgaonkar VA; Corregan NM; Holland CK; Mast TD Proc Meet Acoust; 2013 Jun; 19(1):075022. PubMed ID: 24817990 [TBL] [Abstract][Full Text] [Related]
51. An in vitro study of a phase-shift nanoemulsion: a potential nucleation agent for bubble-enhanced HIFU tumor ablation. Zhang P; Porter T Ultrasound Med Biol; 2010 Nov; 36(11):1856-66. PubMed ID: 20888685 [TBL] [Abstract][Full Text] [Related]
52. Passive spatial mapping of inertial cavitation during HIFU exposure. Gyöngy M; Coussios CC IEEE Trans Biomed Eng; 2010 Jan; 57(1):48-56. PubMed ID: 19628450 [TBL] [Abstract][Full Text] [Related]
53. Dependence of Boiling Histotripsy Treatment Efficiency on HIFU Frequency and Focal Pressure Levels. Khokhlova TD; Haider YA; Maxwell AD; Kreider W; Bailey MR; Khokhlova VA Ultrasound Med Biol; 2017 Sep; 43(9):1975-1985. PubMed ID: 28641910 [TBL] [Abstract][Full Text] [Related]
54. A study of bubble activity generated in ex vivo tissue by high intensity focused ultrasound. McLaughlan J; Rivens I; Leighton T; Ter Haar G Ultrasound Med Biol; 2010 Aug; 36(8):1327-44. PubMed ID: 20691922 [TBL] [Abstract][Full Text] [Related]
55. Improved intercostal HIFU ablation using a phased array transducer based on Fermat's spiral and Voronoi tessellation: A numerical evaluation. Ramaekers P; Ries M; Moonen CT; de Greef M Med Phys; 2017 Mar; 44(3):1071-1088. PubMed ID: 28058731 [TBL] [Abstract][Full Text] [Related]
56. Enhancement and quenching of high-intensity focused ultrasound cavitation activity via short frequency sweep gaps. Hallez L; Lee J; Touyeras F; Nevers A; Ashokkumar M; Hihn JY Ultrason Sonochem; 2016 Mar; 29():194-7. PubMed ID: 26584998 [TBL] [Abstract][Full Text] [Related]
57. An acoustic backscatter-based method for localization of lesions induced by high-intensity focused ultrasound. Zheng X; Vaezy S Ultrasound Med Biol; 2010 Apr; 36(4):610-22. PubMed ID: 20211516 [TBL] [Abstract][Full Text] [Related]
58. Ex vivo evaluation of high-intensity focused ultrasound with ultrasonic-induced cavitation bubbles. Abe N; Nakamoto H; Suzuki T; Muragaki Y; Iseki H J Med Ultrason (2001); 2014 Jan; 41(1):3-9. PubMed ID: 27277627 [TBL] [Abstract][Full Text] [Related]
59. Ultrasound line-by-line scanning method of spatial-temporal active cavitation mapping for high-intensity focused ultrasound. Ding T; Zhang S; Fu Q; Xu Z; Wan M Ultrasonics; 2014 Jan; 54(1):147-55. PubMed ID: 23673346 [TBL] [Abstract][Full Text] [Related]
60. Utility of a tumor-mimic model for the evaluation of the accuracy of HIFU treatments. results of in vitro experiments in the liver. N'Djin WA; Melodelima D; Parmentier H; Chesnais S; Rivoire M; Chapelon JY Ultrasound Med Biol; 2008 Dec; 34(12):1934-43. PubMed ID: 18621469 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]