These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
307 related articles for article (PubMed ID: 10923924)
1. Interphase cytogenetics in oncocytic adenomas and carcinomas of the thyroid gland. Mazzucchelli L; Burckhardt E; Hirsiger H; Kappeler A; Laissue JA Hum Pathol; 2000 Jul; 31(7):854-9. PubMed ID: 10923924 [TBL] [Abstract][Full Text] [Related]
2. Significance of trisomy 7 and 12 in thyroid lesions with follicular differentiation: a cytogenetic and in situ hybridization study. Roque L; Serpa A; Clode A; Castedo S; Soares J Lab Invest; 1999 Apr; 79(4):369-78. PubMed ID: 10211989 [TBL] [Abstract][Full Text] [Related]
3. Detection of numerical alterations for chromosomes 7 and 12 in benign thyroid lesions by in situ hybridization. Histological implications. Criado B; Barros A; Suijkerbuijk RF; Weghuis DO; Seruca R; Fonseca E; Castedo S Am J Pathol; 1995 Jul; 147(1):136-44. PubMed ID: 7604875 [TBL] [Abstract][Full Text] [Related]
4. Adenomas and follicular carcinomas of the thyroid display two major patterns of chromosomal changes. Castro P; Eknaes M; Teixeira MR; Danielsen HE; Soares P; Lothe RA; Sobrinho-Simões M J Pathol; 2005 Jul; 206(3):305-11. PubMed ID: 15852498 [TBL] [Abstract][Full Text] [Related]
5. Aneuploidy in oncocytic lesions of the thyroid gland: diffuse accumulation of mitochondria within the cell is associated with trisomy 7 and progressive numerical chromosomal alterations. Dettori T; Frau DV; Lai ML; Mariotti S; Uccheddu A; Daniele GM; Tallini G; Faa G; Vanni R Genes Chromosomes Cancer; 2003 Sep; 38(1):22-31. PubMed ID: 12874783 [TBL] [Abstract][Full Text] [Related]
6. Frequent chromosomal DNA unbalance in thyroid oncocytic (Hürthle cell) neoplasms detected by comparative genomic hybridization. Tallini G; Hsueh A; Liu S; Garcia-Rostan G; Speicher MR; Ward DC Lab Invest; 1999 May; 79(5):547-55. PubMed ID: 10334566 [TBL] [Abstract][Full Text] [Related]
7. [From the cytogenetics to the cytogenomics of thyroid tumors]. Perissel B; Bernheim A; Couturier J; Fouilhoux G; Vago P Bull Cancer; 2002 Jun; 89(6):588-92. PubMed ID: 12135859 [TBL] [Abstract][Full Text] [Related]
8. Analysis of Hurthle cell neoplasms of the thyroid by interphase fluorescence in situ hybridization. Erickson LA; Jalal SM; Goellner JR; Law ME; Harwood A; Jin L; Roche PC; Lloyd RV Am J Surg Pathol; 2001 Jul; 25(7):911-7. PubMed ID: 11420462 [TBL] [Abstract][Full Text] [Related]
9. In situ hybridization and flow cytometric analysis of colorectal tumours suggests two routes of tumourigenesis characterized by gain of chromosome 7 or loss of chromosomes 17 and 18. Herbergs J; Hopman AH; De Bruïne AP; Ramaekers FC; Arends JW J Pathol; 1996 Jul; 179(3):243-7. PubMed ID: 8774477 [TBL] [Abstract][Full Text] [Related]
10. Low frequency of numerical chromosomal aberrations in follicular thyroid tumors detected by comparative genomic hybridization. Frisk T; Kytölä S; Wallin G; Zedenius J; Larsson C Genes Chromosomes Cancer; 1999 Aug; 25(4):349-53. PubMed ID: 10398428 [TBL] [Abstract][Full Text] [Related]
12. Analysis of parathyroid neoplasms by interphase fluorescence in situ hybridization. Erickson LA; Jalal SM; Harwood A; Shearer B; Jin L; Lloyd RV Am J Surg Pathol; 2004 May; 28(5):578-84. PubMed ID: 15105644 [TBL] [Abstract][Full Text] [Related]
13. [Detection of chromosomal numerical aberration in early colorectal carcinomas using fluorescence in situ hybridization]. Morinaga M; Tagawa Y; Yasutake T; Miyashita K; Sawai T; Matsumoto Y; Nanashima A; Hatano K; Uchikawa T; Fujise N Gan To Kagaku Ryoho; 1994 May; 21 Suppl 1():75-81. PubMed ID: 8203936 [TBL] [Abstract][Full Text] [Related]
14. Improved technique for analysis of formalin-fixed, paraffin-embedded tumors by fluorescence in situ hybridization. Hyytinen E; Visakorpi T; Kallioniemi A; Kallioniemi OP; Isola JJ Cytometry; 1994 Jun; 16(2):93-9. PubMed ID: 7924686 [TBL] [Abstract][Full Text] [Related]
15. Chromosome imbalances in thyroid follicular neoplasms: a comparison between follicular adenomas and carcinomas. Roque L; Rodrigues R; Pinto A; Moura-Nunes V; Soares J Genes Chromosomes Cancer; 2003 Mar; 36(3):292-302. PubMed ID: 12557229 [TBL] [Abstract][Full Text] [Related]
16. Evaluation of MYC and chromosome 8 copy number in breast carcinoma by interphase cytogenetics. Visscher DW; Wallis T; Awussah S; Mohamed A; Crissman JD Genes Chromosomes Cancer; 1997 Jan; 18(1):1-7. PubMed ID: 8993975 [TBL] [Abstract][Full Text] [Related]
17. Interphase cytogenetic studies of human hepatocellular carcinomas by fluorescent in situ hybridization. Hamon-Benais C; Ingster O; Terris B; Couturier-Turpin MH; Bernheim A; Feldmann G Hepatology; 1996 Mar; 23(3):429-35. PubMed ID: 8617421 [TBL] [Abstract][Full Text] [Related]
18. Interphase cytogenetic analysis of serous ovarian tumors of low malignant potential: comparison with serous cystadenomas and invasive serous carcinomas. Diebold J; Deisenhofer I; Baretton GB; Blasenbreu S; Suchy B; Schneiderbanger K; Meier W; Haas CJ; Löhrs U Lab Invest; 1996 Oct; 75(4):473-85. PubMed ID: 8874380 [TBL] [Abstract][Full Text] [Related]
19. Numerical aberrations of chromosomes 1 and 7 in renal cell carcinomas as detected by interphase cytogenetics. Beck JL; Hopman AH; Feitz WF; Schalken J; Schaafsma HE; Van de Kaa CA; Ramaekers FC; Hanselaar AG; De Wilde PC J Pathol; 1995 Jun; 176(2):123-35. PubMed ID: 7636622 [TBL] [Abstract][Full Text] [Related]
20. Gains of chromosomes 7, 17, 12, 16, and 20 and loss of Y occur early in the evolution of papillary renal cell neoplasia: a fluorescent in situ hybridization study. Brunelli M; Eble JN; Zhang S; Martignoni G; Cheng L Mod Pathol; 2003 Oct; 16(10):1053-9. PubMed ID: 14559990 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]