BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

368 related articles for article (PubMed ID: 10924144)

  • 1. Attractant regulation of the aspartate receptor-kinase complex: limited cooperative interactions between receptors and effects of the receptor modification state.
    Bornhorst JA; Falke JJ
    Biochemistry; 2000 Aug; 39(31):9486-93. PubMed ID: 10924144
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative analysis of aspartate receptor signaling complex reveals that the homogeneous two-state model is inadequate: development of a heterogeneous two-state model.
    Bornhorst JA; Falke JJ
    J Mol Biol; 2003 Mar; 326(5):1597-614. PubMed ID: 12595268
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adaptation mechanism of the aspartate receptor: electrostatics of the adaptation subdomain play a key role in modulating kinase activity.
    Starrett DJ; Falke JJ
    Biochemistry; 2005 Feb; 44(5):1550-60. PubMed ID: 15683239
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineered socket study of signaling through a four-helix bundle: evidence for a yin-yang mechanism in the kinase control module of the aspartate receptor.
    Swain KE; Gonzalez MA; Falke JJ
    Biochemistry; 2009 Oct; 48(39):9266-77. PubMed ID: 19705835
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conserved glycine residues in the cytoplasmic domain of the aspartate receptor play essential roles in kinase coupling and on-off switching.
    Coleman MD; Bass RB; Mehan RS; Falke JJ
    Biochemistry; 2005 May; 44(21):7687-95. PubMed ID: 15909983
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An allosteric model for transmembrane signaling in bacterial chemotaxis.
    Rao CV; Frenklach M; Arkin AP
    J Mol Biol; 2004 Oct; 343(2):291-303. PubMed ID: 15451661
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evidence that both ligand binding and covalent adaptation drive a two-state equilibrium in the aspartate receptor signaling complex.
    Bornhorst JA; Falke JJ
    J Gen Physiol; 2001 Dec; 118(6):693-710. PubMed ID: 11723162
    [TBL] [Abstract][Full Text] [Related]  

  • 8. TNP-ATP and TNP-ADP as probes of the nucleotide binding site of CheA, the histidine protein kinase in the chemotaxis signal transduction pathway of Escherichia coli.
    Stewart RC; VanBruggen R; Ellefson DD; Wolfe AJ
    Biochemistry; 1998 Sep; 37(35):12269-79. PubMed ID: 9724541
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Imitation of Escherichia coli aspartate receptor signaling in engineered dimers of the cytoplasmic domain.
    Cochran AG; Kim PS
    Science; 1996 Feb; 271(5252):1113-6. PubMed ID: 8599087
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ligand affinity and kinase activity are independent of bacterial chemotaxis receptor concentration: insight into signaling mechanisms.
    Sferdean FC; Weis RM; Thompson LK
    Biochemistry; 2012 Sep; 51(35):6920-31. PubMed ID: 22870954
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Attractant signaling by an aspartate chemoreceptor dimer with a single cytoplasmic domain.
    Gardina PJ; Manson MD
    Science; 1996 Oct; 274(5286):425-6. PubMed ID: 8832892
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Covalent modification regulates ligand binding to receptor complexes in the chemosensory system of Escherichia coli.
    Li G; Weis RM
    Cell; 2000 Feb; 100(3):357-65. PubMed ID: 10676817
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Signaling by the Escherichia coli aspartate chemoreceptor Tar with a single cytoplasmic domain per dimer.
    Tatsuno I; Homma M; Oosawa K; Kawagishi I
    Science; 1996 Oct; 274(5286):423-5. PubMed ID: 8832891
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of a site critical for kinase regulation on the central processing unit (CPU) helix of the aspartate receptor.
    Trammell MA; Falke JJ
    Biochemistry; 1999 Jan; 38(1):329-36. PubMed ID: 9890914
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CheA Kinase of bacterial chemotaxis: chemical mapping of four essential docking sites.
    Miller AS; Kohout SC; Gilman KA; Falke JJ
    Biochemistry; 2006 Jul; 45(29):8699-711. PubMed ID: 16846213
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional interactions between receptors in bacterial chemotaxis.
    Sourjik V; Berg HC
    Nature; 2004 Mar; 428(6981):437-41. PubMed ID: 15042093
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Defining a key receptor-CheA kinase contact and elucidating its function in the membrane-bound bacterial chemosensory array: a disulfide mapping and TAM-IDS Study.
    Piasta KN; Ulliman CJ; Slivka PF; Crane BR; Falke JJ
    Biochemistry; 2013 Jun; 52(22):3866-80. PubMed ID: 23668882
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Receptor-mediated protein kinase activation and the mechanism of transmembrane signaling in bacterial chemotaxis.
    Liu Y; Levit M; Lurz R; Surette MG; Stock JB
    EMBO J; 1997 Dec; 16(24):7231-40. PubMed ID: 9405352
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Changing the specificity of a bacterial chemoreceptor.
    Derr P; Boder E; Goulian M
    J Mol Biol; 2006 Feb; 355(5):923-32. PubMed ID: 16359703
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mapping out regions on the surface of the aspartate receptor that are essential for kinase activation.
    Mehan RS; White NC; Falke JJ
    Biochemistry; 2003 Mar; 42(10):2952-9. PubMed ID: 12627961
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.