These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
251 related articles for article (PubMed ID: 10924261)
1. Photoperiodic and thermal regulation of development and cold hardiness in larvae of the clover leaf weevil, Hypera punctata. Watanabe M Cryobiology; 2000 Jun; 40(4):294-301. PubMed ID: 10924261 [TBL] [Abstract][Full Text] [Related]
2. Overwintering status and cold hardiness of hypera punctata. Watanabe M; Tanaka K Cryobiology; 1997 Nov; 35(3):270-6. PubMed ID: 9367614 [TBL] [Abstract][Full Text] [Related]
3. Quantitative short-day photoperiodic response in larval development and its adaptive significance in an adult-overwintering cerambycid beetle, Phytoecia rufiventris. Shintani Y J Insect Physiol; 2011 Jul; 57(7):1053-9. PubMed ID: 21616076 [TBL] [Abstract][Full Text] [Related]
4. Cold resistance in the lesser mealworm Alphitobius diaperinus (Panzer) (Coleoptera: Tenebrionidae). Salin C; Vernon P; Vannier G Cryo Letters; 2003; 24(2):111-8. PubMed ID: 12819832 [TBL] [Abstract][Full Text] [Related]
5. Photoperiod is the main cue that triggers supercooling ability in the land snail, Helix aspersa (Gastropoda: Helicidae). Ansart A; Vernon P; Daguzan J Cryobiology; 2001 Jun; 42(4):266-73. PubMed ID: 11748935 [TBL] [Abstract][Full Text] [Related]
6. Photoperiod modifies thermal reaction norms for growth and development in the red poplar leaf beetle Chrysomela populi (Coleoptera: Chrysomelidae). Kutcherov DA; Lopatina EB; Kipyatkov VE J Insect Physiol; 2011 Jul; 57(7):892-8. PubMed ID: 21510952 [TBL] [Abstract][Full Text] [Related]
7. Factors that influence freezing in the sub-Antarctic springtail Tullbergia antarctica. Worland MR J Insect Physiol; 2005 Aug; 51(8):881-94. PubMed ID: 15936029 [TBL] [Abstract][Full Text] [Related]
8. Cold-Hardiness and Supercooling Capacity in Diapausing and Nondiapausing Stages of the Cabbage Root Fly Delia radicum. Kost;l V Cryobiology; 1993 Oct; 30(5):524-531. PubMed ID: 11987992 [TBL] [Abstract][Full Text] [Related]
9. Effects of photoperiod and temperature on the rate of larval development, food conversion efficiency, and imaginal diapause in Leptinotarsa decemlineata. Dolezal P; Habustová O; Sehnal F J Insect Physiol; 2007 Aug; 53(8):849-57. PubMed ID: 17553521 [TBL] [Abstract][Full Text] [Related]
10. Cold hardiness of Asian longhorned beetle (Coleoptera: Cerambycidae) larvae in different populations. Feng Y; Xu L; Tian B; Tao J; Wang J; Zong S Environ Entomol; 2014 Oct; 43(5):1419-26. PubMed ID: 25202887 [TBL] [Abstract][Full Text] [Related]
11. Effects of diapause and cold-acclimation on the avoidance of freezing injury in fat body tissue of the rice stem borer, Chilo suppressalis Walker. Izumi Y; Sonoda S; Tsumuki H J Insect Physiol; 2007 Jul; 53(7):685-90. PubMed ID: 17543330 [TBL] [Abstract][Full Text] [Related]
12. Rapid cold-hardening increases the freezing tolerance of the Antarctic midge Belgica antarctica. Lee RE; Elnitsky MA; Rinehart JP; Hayward SA; Sandro LH; Denlinger DL J Exp Biol; 2006 Feb; 209(Pt 3):399-406. PubMed ID: 16424090 [TBL] [Abstract][Full Text] [Related]
13. Modeling cold tolerance in the mountain pine beetle, Dendroctonus ponderosae. Régnière J; Bentz B J Insect Physiol; 2007 Jun; 53(6):559-72. PubMed ID: 17412358 [TBL] [Abstract][Full Text] [Related]
14. Reverse altitudinal cline in cold hardiness among Erebia butterflies. Vrba P; Konvicka M; Nedved O Cryo Letters; 2012; 33(4):251-8. PubMed ID: 22987236 [TBL] [Abstract][Full Text] [Related]
15. Some attributes of cold hardiness of the gregarious ectoparasitoid Colpoclypeus florus (Hymenoptera: Eulophidae). Milonas PG; Savopoulou-Soultani M Cryo Letters; 2005; 26(6):395-9. PubMed ID: 16547547 [TBL] [Abstract][Full Text] [Related]
16. The relationship between gut contents and supercooling capacity in hatchling painted turtles (Chrysemys picta). Packard GC; Packard MJ Comp Biochem Physiol A Mol Integr Physiol; 2006 May; 144(1):98-104. PubMed ID: 16580240 [TBL] [Abstract][Full Text] [Related]
17. Influence of generation and photoperiod on larval development of Lobesia botrana (Lepidoptera: Tortricidae). Pavan F; Floreani C; Barro P; Zandigiacomo P; Montà LD Environ Entomol; 2010 Oct; 39(5):1652-8. PubMed ID: 22546464 [TBL] [Abstract][Full Text] [Related]
18. Effects of temperature and photoperiod on termination of pseudopupal diapause in the bean blister beetle, Epicauta gorhami. Terao M; Hirose Y; Shintani Y J Insect Physiol; 2012 May; 58(5):737-42. PubMed ID: 22402168 [TBL] [Abstract][Full Text] [Related]
19. Cold tolerance and supercooling capacity in overwintering adults of elm leaf beetle Xanthogaleruca luteola (Coleoptera: Chrysomelidae). Soudi Sh; Moharramipour S Environ Entomol; 2011 Dec; 40(6):1546-53. PubMed ID: 22217772 [TBL] [Abstract][Full Text] [Related]
20. Inheritance of the photoperiodic response controlling imaginal summer diapause in the cabbage beetle, Colaphellus bowringi. Kuang XJ; Xu J; Xia QW; He HM; Xue FS J Insect Physiol; 2011 May; 57(5):614-9. PubMed ID: 21215751 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]