BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

59 related articles for article (PubMed ID: 10924360)

  • 1. The use of the novel substrate-heme complex approach in the derivation of a representation of the active site of the enzyme cholesterol side chain cleavage.
    Ahmed S
    Biochem Biophys Res Commun; 2000 Aug; 274(3):821-4. PubMed ID: 10924360
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The use of the substrate-heme complex approach in the design, synthesis, biochemical evaluation, and rationalization of the inhibitory activity of a range of azole compounds against cholesterol side chain cleavage enzyme.
    Ahmed S
    Biochem Biophys Res Commun; 2000 Aug; 275(1):75-6. PubMed ID: 10944444
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhibition of iron-sulfur protein-mediated reduction of cytochrome P-450SCC by specific antibodies.
    Seeley DH; Wolfson AJ; Hourihan J; Schleyer H; Kashiwagi K; Salhanick HA
    Endocrinology; 1985 May; 116(5):2008-12. PubMed ID: 3987629
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The use of the novel substrate-heme complex approach in the derivation of a representation of the active site of the enzyme complex 17alpha-hydroxylase and 17,20-lyase.
    Ahmed S
    Biochem Biophys Res Commun; 2004 Apr; 316(3):595-8. PubMed ID: 15033441
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The influence of substrate on the spectral properties of oxyferrous wild-type and T252A cytochrome P450-CAM.
    Sono M; Perera R; Jin S; Makris TM; Sligar SG; Bryson TA; Dawson JH
    Arch Biochem Biophys; 2005 Apr; 436(1):40-9. PubMed ID: 15752707
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel oxazolidinone based compounds as inhibitors of aromatase and the use of the substrate-heme complex approach in the rationalisation of these compounds.
    Ahmed S; Adat S; Murrells A; Owen CP
    Biochem Biophys Res Commun; 2002 Jun; 294(2):380-3. PubMed ID: 12051723
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modulation of redox potential and alteration in reactivity via the peroxide shunt pathway by mutation of cytochrome P450 around the proximal heme ligand.
    Matsumura H; Wakatabi M; Omi S; Ohtaki A; Nakamura N; Yohda M; Ohno H
    Biochemistry; 2008 Apr; 47(16):4834-42. PubMed ID: 18363338
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crystal structure of CYP199A2, a para-substituted benzoic acid oxidizing cytochrome P450 from Rhodopseudomonas palustris.
    Bell SG; Xu F; Forward I; Bartlam M; Rao Z; Wong LL
    J Mol Biol; 2008 Nov; 383(3):561-74. PubMed ID: 18762195
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ketoconazole-induced conformational changes in the active site of cytochrome P450eryF.
    Cupp-Vickery JR; Garcia C; Hofacre A; McGee-Estrada K
    J Mol Biol; 2001 Aug; 311(1):101-10. PubMed ID: 11469860
    [TBL] [Abstract][Full Text] [Related]  

  • 10. How do substrates enter and products exit the buried active site of cytochrome P450cam? 1. Random expulsion molecular dynamics investigation of ligand access channels and mechanisms.
    Lüdemann SK; Lounnas V; Wade RC
    J Mol Biol; 2000 Nov; 303(5):797-811. PubMed ID: 11061976
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stereoselective inhibition of cholesterol side chain cleavage by enantiomers of aminoglutethimide.
    Uzgiris VI; Whipple CA; Salhanick HA
    Endocrinology; 1977 Jul; 101(1):89-92. PubMed ID: 862564
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of the conserved threonine in P450 BM3 oxygen activation: substrate-determined hydroxylation activity of the Thr268Ala mutant.
    Cryle MJ; De Voss JJ
    Chembiochem; 2008 Jan; 9(2):261-6. PubMed ID: 18161730
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The kinetic and spectral characterization of the E. coli-expressed mammalian CYP4A7: cytochrome b5 effects vary with substrate.
    Loughran PA; Roman LJ; Miller RT; Masters BS
    Arch Biochem Biophys; 2001 Jan; 385(2):311-21. PubMed ID: 11368012
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Filling a hole in cytochrome P450 BM3 improves substrate binding and catalytic efficiency.
    Huang WC; Westlake AC; Maréchal JD; Joyce MG; Moody PC; Roberts GC
    J Mol Biol; 2007 Oct; 373(3):633-51. PubMed ID: 17868686
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oxygen activation and electron transfer in flavocytochrome P450 BM3.
    Ost TW; Clark J; Mowat CG; Miles CS; Walkinshaw MD; Reid GA; Chapman SK; Daff S
    J Am Chem Soc; 2003 Dec; 125(49):15010-20. PubMed ID: 14653735
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A role of the heme-7-propionate side chain in cytochrome P450cam as a gate for regulating the access of water molecules to the substrate-binding site.
    Hayashi T; Harada K; Sakurai K; Shimada H; Hirota S
    J Am Chem Soc; 2009 Feb; 131(4):1398-400. PubMed ID: 19133773
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oxidative one-carbon cleavage of the octyl side chain of olanexidine, a novel antimicrobial agent, in dog liver microsomes.
    Umehara K; Shimokawa Y; Koga T; Ohtani T; Miyamoto G
    Xenobiotica; 2004 Jan; 34(1):61-71. PubMed ID: 14742137
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A catalytic approach to estimate the redox potential of heme-peroxidases.
    Ayala M; Roman R; Vazquez-Duhalt R
    Biochem Biophys Res Commun; 2007 Jun; 357(3):804-8. PubMed ID: 17442271
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cytochrome P-450scc-substrate interactions. Role of the 3 beta- and side chain hydroxyls in binding to oxidized and reduced forms of the enzyme.
    Heyl BL; Tyrrell DJ; Lambeth JD
    J Biol Chem; 1986 Feb; 261(6):2743-9. PubMed ID: 3081497
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design, synthesis, and biological testing of potential heme-coordinating nitric oxide synthase inhibitors.
    Litzinger EA; Martásek P; Roman LJ; Silverman RB
    Bioorg Med Chem; 2006 May; 14(9):3185-98. PubMed ID: 16431112
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.