BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 10924463)

  • 1. Identification of domains required for developmentally regulated SNARE function in Saccharomyces cerevisiae.
    Neiman AM; Katz L; Brennwald PJ
    Genetics; 2000 Aug; 155(4):1643-55. PubMed ID: 10924463
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vitro fusion catalyzed by the sporulation-specific t-SNARE light-chain Spo20p is stimulated by phosphatidic acid.
    Liu S; Wilson KA; Rice-Stitt T; Neiman AM; McNew JA
    Traffic; 2007 Nov; 8(11):1630-43. PubMed ID: 17714435
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genetic evidence of a role for membrane lipid composition in the regulation of soluble NEM-sensitive factor receptor function in Saccharomyces cerevisiae.
    Coluccio A; Malzone M; Neiman AM
    Genetics; 2004 Jan; 166(1):89-97. PubMed ID: 15020409
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of SNARE complex assembly by an N-terminal domain of the t-SNARE Sso1p.
    Nicholson KL; Munson M; Miller RB; Filip TJ; Fairman R; Hughson FM
    Nat Struct Biol; 1998 Sep; 5(9):793-802. PubMed ID: 9731774
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of a yeast SNARE complex reveals remarkable similarity to the neuronal SNARE complex and a novel function for the C terminus of the SNAP-25 homolog, Sec9.
    Rossi G; Salminen A; Rice LM; Brünger AT; Brennwald P
    J Biol Chem; 1997 Jun; 272(26):16610-7. PubMed ID: 9195974
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Positive and negative regulation of a SNARE protein by control of intracellular localization.
    Nakanishi H; de los Santos P; Neiman AM
    Mol Biol Cell; 2004 Apr; 15(4):1802-15. PubMed ID: 14742704
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sec1p binds to SNARE complexes and concentrates at sites of secretion.
    Carr CM; Grote E; Munson M; Hughson FM; Novick PJ
    J Cell Biol; 1999 Jul; 146(2):333-44. PubMed ID: 10427089
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conformational regulation of SNARE assembly and disassembly in vivo.
    Munson M; Hughson FM
    J Biol Chem; 2002 Mar; 277(11):9375-81. PubMed ID: 11777922
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sec9 is a SNAP-25-like component of a yeast SNARE complex that may be the effector of Sec4 function in exocytosis.
    Brennwald P; Kearns B; Champion K; Keränen S; Bankaitis V; Novick P
    Cell; 1994 Oct; 79(2):245-58. PubMed ID: 7954793
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The polybasic juxtamembrane region of Sso1p is required for SNARE function in vivo.
    Van Komen JS; Bai X; Rodkey TL; Schaub J; McNew JA
    Eukaryot Cell; 2005 Dec; 4(12):2017-28. PubMed ID: 16339720
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional architecture of an intracellular membrane t-SNARE.
    Fukuda R; McNew JA; Weber T; Parlati F; Engel T; Nickel W; Rothman JE; Söllner TH
    Nature; 2000 Sep; 407(6801):198-202. PubMed ID: 11001059
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bet1p activates the v-SNARE Bos1p.
    Stone S; Sacher M; Mao Y; Carr C; Lyons P; Quinn AM; Ferro-Novick S
    Mol Biol Cell; 1997 Jul; 8(7):1175-81. PubMed ID: 9243499
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Yeast homologues of tomosyn and lethal giant larvae function in exocytosis and are associated with the plasma membrane SNARE, Sec9.
    Lehman K; Rossi G; Adamo JE; Brennwald P
    J Cell Biol; 1999 Jul; 146(1):125-40. PubMed ID: 10402465
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vam7p, a SNAP-25-like molecule, and Vam3p, a syntaxin homolog, function together in yeast vacuolar protein trafficking.
    Sato TK; Darsow T; Emr SD
    Mol Cell Biol; 1998 Sep; 18(9):5308-19. PubMed ID: 9710615
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interactions within the yeast t-SNARE Sso1p that control SNARE complex assembly.
    Munson M; Chen X; Cocina AE; Schultz SM; Hughson FM
    Nat Struct Biol; 2000 Oct; 7(10):894-902. PubMed ID: 11017200
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prospore membrane formation defines a developmentally regulated branch of the secretory pathway in yeast.
    Neiman AM
    J Cell Biol; 1998 Jan; 140(1):29-37. PubMed ID: 9425151
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Formation of a yeast SNARE complex is accompanied by significant structural changes.
    Rice LM; Brennwald P; Brünger AT
    FEBS Lett; 1997 Sep; 415(1):49-55. PubMed ID: 9326367
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dimerization of the exocyst protein Sec6p and its interaction with the t-SNARE Sec9p.
    Sivaram MV; Saporita JA; Furgason ML; Boettcher AJ; Munson M
    Biochemistry; 2005 Apr; 44(16):6302-11. PubMed ID: 15835919
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of a novel yeast SNARE protein implicated in Golgi retrograde traffic.
    Lupashin VV; Pokrovskaya ID; McNew JA; Waters MG
    Mol Biol Cell; 1997 Dec; 8(12):2659-76. PubMed ID: 9398683
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phospholipase D and the SNARE Sso1p are necessary for vesicle fusion during sporulation in yeast.
    Nakanishi H; Morishita M; Schwartz CL; Coluccio A; Engebrecht J; Neiman AM
    J Cell Sci; 2006 Apr; 119(Pt 7):1406-15. PubMed ID: 16554438
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.