These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 10926228)

  • 1. Reactive-site design in folded-polypeptide catalysts--the leaving group pKa of reactive esters sets the stage for cooperativity in nucleophilic and general-acid catalysis.
    Nilsson J; Baltzer L
    Chemistry; 2000 Jun; 6(12):2214-20. PubMed ID: 10926228
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Catalysis of the cleavage of uridine 3'-2,2,2-trichloroethylphosphate by a designed helix-loop-helix motif peptide.
    Razkin J; Nilsson H; Baltzer L
    J Am Chem Soc; 2007 Nov; 129(47):14752-8. PubMed ID: 17985898
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Designed four-helix bundle catalysts--the engineering of reactive sites for hydrolysis and transesterification reactions of p-nitrophenyl esters.
    Baltzer L; Broo KS; Nilsson H; Nilsson J
    Bioorg Med Chem; 1999 Jan; 7(1):83-91. PubMed ID: 10199659
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nucleophilic and general acid catalysis at physiological pH by a designed miniature esterase.
    Nicoll AJ; Allemann RK
    Org Biomol Chem; 2004 Aug; 2(15):2175-80. PubMed ID: 15280952
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intramolecular general base catalyzed ester hydrolysis. The hydrolysis of 2-aminobenzoate esters.
    Fife TH; Singh R; Bembi R
    J Org Chem; 2002 May; 67(10):3179-83. PubMed ID: 12003523
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Metal-substrate interactions facilitate the catalytic activity of the bacterial phosphotriesterase.
    Hong SB; Raushel FM
    Biochemistry; 1996 Aug; 35(33):10904-12. PubMed ID: 8718883
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanistic studies of protein tyrosine phosphatases YopH and Cdc25A with m-nitrobenzyl phosphate.
    McCain DF; Grzyska PK; Wu L; Hengge AC; Zhang ZY
    Biochemistry; 2004 Jun; 43(25):8256-64. PubMed ID: 15209522
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigation of a general base mechanism for ester hydrolysis in C-C hydrolase enzymes of the alpha/beta-hydrolase superfamily: a novel mechanism for the serine catalytic triad.
    Li JJ; Bugg TD
    Org Biomol Chem; 2007 Feb; 5(3):507-13. PubMed ID: 17252134
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transition-state structures for the native dual-specific phosphatase VHR and D92N and S131A mutants. Contributions to the driving force for catalysis.
    Hengge AC; Denu JM; Dixon JE
    Biochemistry; 1996 Jun; 35(22):7084-92. PubMed ID: 8679534
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced complexity and catalytic efficiency in the hydrolysis of phosphate diesters by rationally designed helix-loop-helix motifs.
    Razkin J; Lindgren J; Nilsson H; Baltzer L
    Chembiochem; 2008 Aug; 9(12):1975-84. PubMed ID: 18600814
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mutational, kinetic, and NMR studies of the mechanism of E. coli GDP-mannose mannosyl hydrolase, an unusual Nudix enzyme.
    Legler PM; Massiah MA; Mildvan AS
    Biochemistry; 2002 Sep; 41(35):10834-48. PubMed ID: 12196023
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Clarification of the pH-dependent kinetic behaviour of papain by using reactivity probes and analysis of alkylation and catalysed acylation reactions in terms of multihydronic state models: implications for electrostatics calculations and interpretation of the consequences of site-specific mutations such as Asp-158-Asn and Asp-158-Glu.
    Mellor GW; Patel M; Thomas EW; Brocklehurst K
    Biochem J; 1993 Aug; 294 ( Pt 1)(Pt 1):201-10. PubMed ID: 8103322
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reaction of imidazole with toluene-4-sulfonate salts of substituted phenyl N-methylpyridinium-4-carboxylate esters: special base catalysis by imidazole.
    Colthurst MJ; Williams A
    Org Biomol Chem; 2003 Jun; 1(11):1995-2000. PubMed ID: 12945785
    [TBL] [Abstract][Full Text] [Related]  

  • 14. PAPAIN-CATALYSED HYDROLYSIS OF SOME HIPPURIC ESTERS. A NEW MECHANISM FOR PAPAIN-CATALYSED HYDROLYSIS.
    LOWE G; WILLIAMS A
    Biochem J; 1965 Jul; 96(1):199-204. PubMed ID: 14346990
    [TBL] [Abstract][Full Text] [Related]  

  • 15. pH-dependence and structure-activity relationships in the papain-catalysed hydrolysis of anilides.
    Lowe G; Yuthavong Y
    Biochem J; 1971 Aug; 124(1):117-22. PubMed ID: 5126467
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Probing the function of Asp128 in the lower molecular weight protein-tyrosine phosphatase-catalyzed reaction. A pre-steady-state and steady-state kinetic investigation.
    Wu L; Zhang ZY
    Biochemistry; 1996 Apr; 35(17):5426-34. PubMed ID: 8611532
    [TBL] [Abstract][Full Text] [Related]  

  • 17. THE SYNTHESIS AND BACITRACIN-CATALYSED HYDROLYSIS OF ARYL ESTERS OF N-ACYLAMINO ACIDS.
    ELMORE DT; SMYTH JJ
    Biochem J; 1965 Mar; 94(3):563-8. PubMed ID: 14340047
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Probing the origin of the compromised catalysis of E. coli alkaline phosphatase in its promiscuous sulfatase reaction.
    Catrina I; O'Brien PJ; Purcell J; Nikolic-Hughes I; Zalatan JG; Hengge AC; Herschlag D
    J Am Chem Soc; 2007 May; 129(17):5760-5. PubMed ID: 17411045
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dependence of the phosphorylation of alkaline phosphatase by phosphate monoesters on the pKa of the leaving group.
    Han R; Coleman JE
    Biochemistry; 1995 Apr; 34(13):4238-45. PubMed ID: 7703237
    [TBL] [Abstract][Full Text] [Related]  

  • 20. General base and general acid catalyzed intramolecular aminolysis of esters. Cyclization of esters of 2-aminomethylbenzoic acid to phthalimidine.
    Fife TH; Chauffe L
    J Org Chem; 2000 Jun; 65(12):3579-86. PubMed ID: 10864739
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.