BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 10926234)

  • 1. The influence of macrocyclic polyether constitution upon ammonium ion/crown ether recognition processes.
    Cantrill SJ; Fulton DA; Heiss AM; Pease AR; Stoddart JF; White AJ; Williams DJ
    Chemistry; 2000 Jun; 6(12):2274-87. PubMed ID: 10926234
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ammonium ion binding with pyridine-containing crown ethers.
    Chang T; Heiss AM; Cantrill SJ; Fyfe MC; Pease AR; Rowan SJ; Stoddart JF; White AJ; Williams DJ
    Org Lett; 2000 Sep; 2(19):2947-50. PubMed ID: 10986079
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A musclelike [2](2)rotaxane: synthesis, performance, and molecular dynamics simulations.
    Li H; Li X; Wu Y; Agren H; Qu DH
    J Org Chem; 2014 Aug; 79(15):6996-7004. PubMed ID: 25028771
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Probing polyvalency in artificial systems exhibiting molecular recognition.
    Fulton DA; Cantrill SJ; Stoddart JF
    J Org Chem; 2002 Nov; 67(23):7968-81. PubMed ID: 12423124
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Post-assembly processing of [2]rotaxanes.
    Chiu SH; Rowan SJ; Cantrill SJ; Stoddart JF; White AJ; Williams DJ
    Chemistry; 2002 Nov; 8(22):5170-83. PubMed ID: 12613035
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reversing a rotaxane recognition motif: threading oligoethylene glycol derivatives through a dicationic cyclophane.
    Chiu SH; Stoddart JF
    J Am Chem Soc; 2002 Apr; 124(16):4174-5. PubMed ID: 11960422
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The influence of constitutional isomerism and change on molecular recognition processes.
    Williams AR; Northrop BH; Houk KN; Stoddart JF; Williams DJ
    Chemistry; 2004 Oct; 10(21):5406-21. PubMed ID: 15372661
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coordination-driven self-assembly of cavity-cored multiple crown ether derivatives and poly[2]pseudorotaxanes.
    Ghosh K; Yang HB; Northrop BH; Lyndon MM; Zheng YR; Muddiman DC; Stang PJ
    J Am Chem Soc; 2008 Apr; 130(15):5320-34. PubMed ID: 18341280
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Formation, dynamic behavior, and chemical transformation of Pt complexes with a rotaxane-like structure.
    Suzaki Y; Osakada K
    Chem Asian J; 2006 Sep; 1(3):331-43. PubMed ID: 17441068
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [2]Rotaxanes containing pyridinium-phosphonium axles and 24-crown-8 ether wheels.
    Georges N; Loeb SJ; Tiburcio J; Wisner JA
    Org Biomol Chem; 2004 Oct; 2(19):2751-6. PubMed ID: 15455146
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sequential O- and N-acylation protocol for high-yield preparation and modification of rotaxanes: synthesis, functionalization, structure, and intercomponent interaction of rotaxanes.
    Tachibana Y; Kawasaki H; Kihara N; Takata T
    J Org Chem; 2006 Jul; 71(14):5093-104. PubMed ID: 16808495
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Weinreb Amide, Ketone and Amine as Potential and Competitive Secondary Molecular Stations for Dibenzo-[24]Crown-8 in [2]Rotaxane Molecular Shuttles.
    Gauthier M; Coutrot F
    Chemistry; 2021 Dec; 27(70):17576-17580. PubMed ID: 34738683
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel pentiptycene bis(crown ether)-based [2](2)rotaxane whose two DB24C8 rings act as flapping wings of a butterfly.
    Ma YX; Meng Z; Chen CF
    Org Lett; 2014 Apr; 16(7):1860-3. PubMed ID: 24635015
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Toward interlocked molecules beyond catenanes and rotaxanes.
    Chang T; Heiss AM; Cantrill SJ; Fyfe MC; Pease AR; Rowan SJ; Stoddart JF; Williams DJ
    Org Lett; 2000 Sep; 2(19):2943-6. PubMed ID: 10986078
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Four-State Molecular Shuttling of [2]Rotaxanes in Response to Acid/Base and Alkali-Metal Cation Stimuli.
    Kimura M; Mizuno T; Ueda M; Miyagawa S; Kawasaki T; Tokunaga Y
    Chem Asian J; 2017 Jun; 12(12):1381-1390. PubMed ID: 28409890
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamic covalent approach to [2]- and [3]roxtanes by utilizing a reversible thiol-disulfide interchange reaction.
    Furusho Y; Oku T; Hasegawa T; Tsuboi A; Kihara N; Takata T
    Chemistry; 2003 Jun; 9(12):2895-2903. PubMed ID: 12868421
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two Stepwise Synthetic Routes toward a Hetero[4]rotaxane.
    Luo QF; Zhu L; Rao SJ; Li H; Miao Q; Qu DH
    J Org Chem; 2015 May; 80(9):4704-9. PubMed ID: 25874382
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interactions in pseudorotoxanes based on crown ether-secondary ammonium motifs. A theoretical study.
    Ramero C; Guadarrama P; Fomine S
    J Mol Model; 2005 Dec; 12(1):85-92. PubMed ID: 16096804
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chemical and electrochemical formation of pseudorotaxanes composed of alkyl(ferrocenylmethyl)ammmonium and dibenzo[24]crown-8.
    Horie M; Suzaki Y; Osakada K
    Inorg Chem; 2005 Aug; 44(16):5844-53. PubMed ID: 16060638
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular shuttles by the protecting group approach.
    Cao J; Fyfe MC; Stoddart JF; Cousins GR; Glink PT
    J Org Chem; 2000 Apr; 65(7):1937-46. PubMed ID: 10774012
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.