BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 1092647)

  • 1. Existence of two levels of repression in the biosynthesis of methionine in Saccharomyces cerevisiae: effect of lomofungin on enzyme synthesis.
    Surdin-Kerjan Y; de Robichon-Szulmajster H
    J Bacteriol; 1975 May; 122(2):367-74. PubMed ID: 1092647
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of methionine synthesis in Saccharomyces cerevisiae operates through independent signals: methionyl-tRNAmet and S-adenosylmethionine.
    Surdin-Kerjan Y; Cherest H; De Robichon-Szulmajster H
    Acta Microbiol Acad Sci Hung; 1976; 23(2):109-20. PubMed ID: 788467
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhibition by lomofungin of nucleic acid and protein synthesis in Saccharomyces cerevisiae.
    Cannon M; Davies JE; Jimenez A
    FEBS Lett; 1973 Jun; 32(2):277-80. PubMed ID: 4582157
    [No Abstract]   [Full Text] [Related]  

  • 4. S-adenosyl methionine-mediated repression of methionine biosynthetic enzymes in Saccharomyces cerevisiae.
    Cherest H; Surdin-Kerjan Y; Antoniewski J; Robichon-Szulmajster H
    J Bacteriol; 1973 Jun; 114(3):928-33. PubMed ID: 4576408
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regulation of homocysteine biosynthesis in Salmonella typhimurium.
    Savin MA; Flavin M; Slaughter C
    J Bacteriol; 1972 Aug; 111(2):547-56. PubMed ID: 4559736
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of regulatory mutations upon methionine biosynthesis in Saccharomyces cerevisiae: loci eth2-eth3-eth10.
    Cherest H; Surdin-Kerjan Y; Antoniewski J; de Robichon-Szulmajster H
    J Bacteriol; 1973 Sep; 115(3):1084-93. PubMed ID: 4580557
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biosynthesis of sulphur amino acids in Saccharomyces cerevisiae: regulatory roles of methionine and S-adenosylmethionine reassessed.
    Paszewski A; Ono BI
    Curr Genet; 1992 Oct; 22(4):273-5. PubMed ID: 1394507
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biochemical and regulatory effects of methionine analogues in Saccharomyces cerevisiae.
    Colombani F; Cherest H; de Robichon-Szulmajster H
    J Bacteriol; 1975 May; 122(2):375-84. PubMed ID: 1092648
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lomofungin, an inhibitor of ribonucleic acid synthesis in yeast protoplasts: its effect on enzyme formation.
    Klo SC; Cano FR; Lampen JO
    Antimicrob Agents Chemother; 1973 Jun; 3(6):716-22. PubMed ID: 4790623
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Induction and repression in the S-adenosylmethionine and methionine biosynthetic systems of Saccharomyces cerevisiae.
    Ferro AJ; Spence KD
    J Bacteriol; 1973 Nov; 116(2):812-7. PubMed ID: 4583251
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetics of induced and repressed enzyme synthesis in Saccharomyces cerevisiae.
    Lawther RP; Cooper TG
    J Bacteriol; 1975 Mar; 121(3):1064-73. PubMed ID: 1090586
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Uptake and utilization of S-adenosyl-L-methionine and S-adenosyl-L-homocysteine in an adenine mutant of Saccharomyces cerevisiae.
    Knudsen RC; Moore K; Yall I
    J Bacteriol; 1969 May; 98(2):629-36. PubMed ID: 5784216
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Methionine-mediated repression in Saccharomyces cerevisiae: a pleiotropic regulatory system involving methionyl transfer ribonucleic acid and the product of gene eth2.
    Cherest H; Surdin-Kerjan Y; Robichon-Szulmajster H
    J Bacteriol; 1971 Jun; 106(3):758-72. PubMed ID: 5557593
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Partial purification and some properties of homoserine O-acetyltransferase of a methionine auxotroph of Saccharomyces cerevisiae.
    Yamagata S
    J Bacteriol; 1987 Aug; 169(8):3458-63. PubMed ID: 3301801
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Methionine-dependent synthesis of ribosomal ribonucleic acid during sporulation and vegetative growth of Saccharomyces cerevisiae.
    Wejksnora PJ; Haber JE
    J Bacteriol; 1974 Dec; 120(3):1344-55. PubMed ID: 4612017
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Methionine-and S-adenosyl methionine-mediated repression in a methionyl-transfer ribonucleic-acid synthetase mutant of Saccharomyces cerevisiae.
    Cherest H; Surdin-Kerjan Y; De Robichon-Szulmajster H
    J Bacteriol; 1975 Aug; 123(2):428-35. PubMed ID: 1099067
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cysteine is essential for transcriptional regulation of the sulfur assimilation genes in Saccharomyces cerevisiae.
    Hansen J; Johannesen PF
    Mol Gen Genet; 2000 Apr; 263(3):535-42. PubMed ID: 10821189
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Macromolecule synthesis in a mutant of Saccharomyces cerevisiae inhibited by S-adenosyimethionine.
    Lipinski C; Ferro AJ; Mills D
    Mol Gen Genet; 1976 Mar; 144(3):301-6. PubMed ID: 775301
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biosynthesis of methionine and its control in wild type and regulatory mutants of Saccharomyces cerevisiae.
    Antoniewski J; Robichon-Szulmajster H
    Biochimie; 1973 May; 55(5):529-39. PubMed ID: 4585174
    [No Abstract]   [Full Text] [Related]  

  • 20. Dominant and semidominant mutations leading to thermosensitivity of ribonucleic acid biosynthesis in Saccharomyces cerevisiae.
    Lacroute F; Huet J; Exinger F
    J Bacteriol; 1975 Jun; 122(3):847-54. PubMed ID: 1097402
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.