These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 1092683)

  • 1. The steady state kinetic parameters and non-processivity of Escherichia coli deoxyribonucleic acid polymerase I.
    McClure WR; Jovin TM
    J Biol Chem; 1975 Jun; 250(11):4073-80. PubMed ID: 1092683
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Steady-state and pre-steady-state kinetic analysis of dNTP insertion opposite 8-oxo-7,8-dihydroguanine by Escherichia coli polymerases I exo- and II exo-.
    Lowe LG; Guengerich FP
    Biochemistry; 1996 Jul; 35(30):9840-9. PubMed ID: 8703958
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetic analysis of Escherichia coli deoxyribonucleic acid polymerase I.
    Travaglini EC; Mildvan AS; Loeb LA
    J Biol Chem; 1975 Nov; 250(22):8647-56. PubMed ID: 1102540
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanism and fidelity of HIV reverse transcriptase.
    Kati WM; Johnson KA; Jerva LF; Anderson KS
    J Biol Chem; 1992 Dec; 267(36):25988-97. PubMed ID: 1281479
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Elementary steps in the DNA polymerase I reaction pathway.
    Bryant FR; Johnson KA; Benkovic SJ
    Biochemistry; 1983 Jul; 22(15):3537-46. PubMed ID: 6351905
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetic analysis of the coding properties of O6-methylguanine in DNA: the crucial role of the conformation of the phosphodiester bond.
    Tan HB; Swann PF; Chance EM
    Biochemistry; 1994 May; 33(17):5335-46. PubMed ID: 8172907
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Studies on the mechanism of DNA polymerase alpha. Nascent chain elongation, steady state kinetics, and the initiation phase of DNA synthesis.
    Detera SD; Becerra SP; Swack JA; Wilson SH
    J Biol Chem; 1981 Jul; 256(13):6933-43. PubMed ID: 7240254
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On the processive mechanism of Escherichia coli DNA polymerase I.
    Uyemura D; Bambara R; Lehman IR
    J Biol Chem; 1975 Nov; 250(22):8577-84. PubMed ID: 1102539
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pre-steady-state kinetic analysis of processive DNA replication including complete characterization of an exonuclease-deficient mutant.
    Patel SS; Wong I; Johnson KA
    Biochemistry; 1991 Jan; 30(2):511-25. PubMed ID: 1846298
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Significance of the O-helix residues of Escherichia coli DNA polymerase I in DNA synthesis: dynamics of the dNTP binding pocket.
    Kaushik N; Pandey VN; Modak MJ
    Biochemistry; 1996 Jun; 35(22):7256-66. PubMed ID: 8679555
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conformation of deoxynucleoside triphosphate substrates on DNA polymerase I from Escherichia coli as determined by nuclear magnetic relaxation.
    Sloan DL; Loeb LA; Mildvan AS
    J Biol Chem; 1975 Dec; 250(23):8913-20. PubMed ID: 1104609
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stopped-flow kinetic analysis of the interaction of Escherichia coli RNA polymerase with the bacteriophage T7 A1 promoter.
    Johnson RS; Chester RE
    J Mol Biol; 1998 Oct; 283(2):353-70. PubMed ID: 9769210
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetic analysis of ribonucleic acid chain initiation by Escherichia coli Ribonucleic acid polymerase bound to DNA.
    Rhodes G; Chamberlin MJ
    J Biol Chem; 1975 Dec; 250(23):9112-20. PubMed ID: 1104616
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Human immunodeficiency virus reverse transcriptase. Substrate and inhibitor kinetics with thymidine 5'-triphosphate and 3'-azido-3'-deoxythymidine 5'-triphosphate.
    Reardon JE; Miller WH
    J Biol Chem; 1990 Nov; 265(33):20302-7. PubMed ID: 1700787
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Human immunodeficiency virus reverse transcriptase: steady-state and pre-steady-state kinetics of nucleotide incorporation.
    Reardon JE
    Biochemistry; 1992 May; 31(18):4473-9. PubMed ID: 1374638
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ordered sequential mechanism of substrate recognition and binding by KB cell DNA polymerase alpha.
    Fisher PA; Korn D
    Biochemistry; 1981 Aug; 20(16):4560-9. PubMed ID: 7295634
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pre-steady-state kinetic characterization of RNA-primed initiation of transcription by HIV-1 reverse transcriptase and analysis of the transition to a processive DNA-primed polymerization mode.
    Thrall SH; Krebs R; Wöhrl BM; Cellai L; Goody RS; Restle T
    Biochemistry; 1998 Sep; 37(38):13349-58. PubMed ID: 9786651
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Refined model for primer/template binding by HIV-1 reverse transcriptase: pre-steady-state kinetic analyses of primer/template binding and nucleotide incorporation events distinguish between different binding modes depending on the nature of the nucleic acid substrate.
    Wöhrl BM; Krebs R; Goody RS; Restle T
    J Mol Biol; 1999 Sep; 292(2):333-44. PubMed ID: 10493879
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spectroscopic analysis of DNA base-pair opening by Escherichia coli RNA polymerase. Temperature and ionic strength effects.
    Shimer GH; Woody AY; Woody RW
    Biochim Biophys Acta; 1988 Sep; 950(3):354-65. PubMed ID: 3048407
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rate-limiting steps in the DNA polymerase I reaction pathway.
    Mizrahi V; Henrie RN; Marlier JF; Johnson KA; Benkovic SJ
    Biochemistry; 1985 Jul; 24(15):4010-8. PubMed ID: 3902078
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.