BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

414 related articles for article (PubMed ID: 10926840)

  • 1. Regulation of GLUT5, GLUT2 and intestinal brush-border fructose absorption by the extracellular signal-regulated kinase, p38 mitogen-activated kinase and phosphatidylinositol 3-kinase intracellular signalling pathways: implications for adaptation to diabetes.
    Helliwell PA; Richardson M; Affleck J; Kellett GL
    Biochem J; 2000 Aug; 350 Pt 1(Pt 1):163-9. PubMed ID: 10926840
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stimulation of fructose transport across the intestinal brush-border membrane by PMA is mediated by GLUT2 and dynamically regulated by protein kinase C.
    Helliwell PA; Richardson M; Affleck J; Kellett GL
    Biochem J; 2000 Aug; 350 Pt 1(Pt 1):149-54. PubMed ID: 10926838
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simple-sugar meals target GLUT2 at enterocyte apical membranes to improve sugar absorption: a study in GLUT2-null mice.
    Gouyon F; Caillaud L; Carriere V; Klein C; Dalet V; Citadelle D; Kellett GL; Thorens B; Leturque A; Brot-Laroche E
    J Physiol; 2003 Nov; 552(Pt 3):823-32. PubMed ID: 12937289
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The diffusive component of intestinal glucose absorption is mediated by the glucose-induced recruitment of GLUT2 to the brush-border membrane.
    Kellett GL; Helliwell PA
    Biochem J; 2000 Aug; 350 Pt 1(Pt 1):155-62. PubMed ID: 10926839
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The regulation of GLUT5 and GLUT2 activity in the adaptation of intestinal brush-border fructose transport in diabetes.
    Corpe CP; Basaleh MM; Affleck J; Gould G; Jess TJ; Kellett GL
    Pflugers Arch; 1996 Jun; 432(2):192-201. PubMed ID: 8662294
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sugar sensing by enterocytes combines polarity, membrane bound detectors and sugar metabolism.
    Le Gall M; Tobin V; Stolarczyk E; Dalet V; Leturque A; Brot-Laroche E
    J Cell Physiol; 2007 Dec; 213(3):834-43. PubMed ID: 17786952
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Age-associated changes in intestinal fructose uptake are not explained by alterations in the abundance of GLUT5 or GLUT2.
    Drozdowski LA; Woudstra TD; Wild GE; Clandinin MT; Thomson AB
    J Nutr Biochem; 2004 Oct; 15(10):630-7. PubMed ID: 15542355
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dietary fructose enhances intestinal fructose transport and GLUT5 expression in weaning rats.
    Shu R; David ES; Ferraris RP
    Am J Physiol; 1997 Mar; 272(3 Pt 1):G446-53. PubMed ID: 9124564
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of rat intestinal GLUT2 mRNA abundance by luminal and systemic factors.
    Cui XL; Jiang L; Ferraris RP
    Biochim Biophys Acta; 2003 Jun; 1612(2):178-85. PubMed ID: 12787936
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differential role of vagus nerve in maintaining diurnal gene expression rhythms in the proximal small intestine.
    Tavakkolizadeh A; Ramsanahie A; Levitsky LL; Zinner MJ; Whang EE; Ashley SW; Rhoads DB
    J Surg Res; 2005 Nov; 129(1):73-8. PubMed ID: 16087191
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 5-aminoimidazole-4-carboxamide riboside (AICAR) enhances GLUT2-dependent jejunal glucose transport: a possible role for AMPK.
    Walker J; Jijon HB; Diaz H; Salehi P; Churchill T; Madsen KL
    Biochem J; 2005 Jan; 385(Pt 2):485-91. PubMed ID: 15367103
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapid insertion of GLUT2 into the rat jejunal brush-border membrane promoted by glucagon-like peptide 2.
    Au A; Gupta A; Schembri P; Cheeseman CI
    Biochem J; 2002 Oct; 367(Pt 1):247-54. PubMed ID: 12095416
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fructose modulates GLUT5 mRNA stability in differentiated Caco-2 cells: role of cAMP-signalling pathway and PABP (polyadenylated-binding protein)-interacting protein (Paip) 2.
    Gouyon F; Onesto C; Dalet V; Pages G; Leturque A; Brot-Laroche E
    Biochem J; 2003 Oct; 375(Pt 1):167-74. PubMed ID: 12820898
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Expression of monosaccharide transporters in intestine of diabetic humans.
    Dyer J; Wood IS; Palejwala A; Ellis A; Shirazi-Beechey SP
    Am J Physiol Gastrointest Liver Physiol; 2002 Feb; 282(2):G241-8. PubMed ID: 11804845
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fructose-induced increases in neonatal rat intestinal fructose transport involve the PI3-kinase/Akt signaling pathway.
    Cui XL; Schlesier AM; Fisher EL; Cerqueira C; Ferraris RP
    Am J Physiol Gastrointest Liver Physiol; 2005 Jun; 288(6):G1310-20. PubMed ID: 15691865
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Protein kinases, TNF-{alpha}, and proteasome contribute in the inhibition of fructose intestinal transport by sepsis in vivo.
    García-Herrera J; Marca MC; Brot-Laroche E; Guillén N; Acin S; Navarro MA; Osada J; Rodríguez-Yoldi MJ
    Am J Physiol Gastrointest Liver Physiol; 2008 Jan; 294(1):G155-64. PubMed ID: 17962360
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of type-2 diabetes and troglitazone on the expression patterns of small intestinal sugar transporters and PPAR-gamma in the Zucker diabetic fatty rat.
    Corpe C; Sreenan S; Burant C
    Digestion; 2001; 63(2):116-23. PubMed ID: 11244250
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intestinal fructose transport and malabsorption in humans.
    Jones HF; Butler RN; Brooks DA
    Am J Physiol Gastrointest Liver Physiol; 2011 Feb; 300(2):G202-6. PubMed ID: 21148401
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Involvement of the MAPK-kinase pathway in the PTH-mediated regulation of the proximal tubule type IIa Na+/Pi cotransporter in mouse kidney.
    Bacic D; Schulz N; Biber J; Kaissling B; Murer H; Wagner CA
    Pflugers Arch; 2003 Apr; 446(1):52-60. PubMed ID: 12690463
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dexamethasone and GLP-2 administered to rat dams during pregnancy and lactation have late effects on intestinal sugar transport in their postweaning offspring.
    Drozdowski LA; Iordache C; Clandinin MT; Todd ZS; Gonnet M; Wild G; Uwiera RR; Thomson AB
    J Nutr Biochem; 2008 Jan; 19(1):49-60. PubMed ID: 17651962
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.