These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

546 related articles for article (PubMed ID: 10926852)

  • 41. Trehalose-6-phosphate synthase 1, which catalyses the first step in trehalose synthesis, is essential for Arabidopsis embryo maturation.
    Eastmond PJ; van Dijken AJ; Spielman M; Kerr A; Tissier AF; Dickinson HG; Jones JD; Smeekens SC; Graham IA
    Plant J; 2002 Jan; 29(2):225-35. PubMed ID: 11851922
    [TBL] [Abstract][Full Text] [Related]  

  • 42. The high general stress resistance of the Saccharomyces cerevisiae fil1 adenylate cyclase mutant (Cyr1Lys1682) is only partially dependent on trehalose, Hsp104 and overexpression of Msn2/4-regulated genes.
    Versele M; Thevelein JM; Van Dijck P
    Yeast; 2004 Jan; 21(1):75-86. PubMed ID: 14745784
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The byp1-3 allele of the Saccharomyces cerevisiae GGS1/TPS1 gene and its multi-copy suppressor tRNA(GLN) (CAG): Ggs1/Tps1 protein levels restraining growth on fermentable sugars and trehalose accumulation.
    Hohmann S; Van Dijck P; Luyten K; Thevelein JM
    Curr Genet; 1994 Oct; 26(4):295-301. PubMed ID: 7882422
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Characterizing phenotypic diversity of trehalose biosynthesis mutants in multiple wild strains of Saccharomyces cerevisiae.
    Chen A; Vargas-Smith J; Tapia H; Gibney PA
    G3 (Bethesda); 2022 Nov; 12(11):. PubMed ID: 35929793
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Catabolite repression mutants of Saccharomyces cerevisiae show altered fermentative metabolism as well as cell cycle behavior in glucose-limited chemostat cultures.
    Aon MA; Cortassa S
    Biotechnol Bioeng; 1998 Jul; 59(2):203-13. PubMed ID: 10099331
    [TBL] [Abstract][Full Text] [Related]  

  • 46. D-glucose overflow metabolism in an evolutionary engineered high-performance D-xylose consuming Saccharomyces cerevisiae strain.
    Nijland JG; Shin HY; Dore E; Rudinatha D; de Waal PP; Driessen AJM
    FEMS Yeast Res; 2021 Jan; 21(1):. PubMed ID: 33232441
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Trehalose metabolism: a regulatory role for trehalose-6-phosphate?
    Eastmond PJ; Graham IA
    Curr Opin Plant Biol; 2003 Jun; 6(3):231-5. PubMed ID: 12753972
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Cloning and truncation modification of trehalose-6-phosphate synthase gene from Selaginella pulvinata.
    Zhao SM; Fu FL; Gou L; Wang HG; He G; Li WC
    Gene; 2013 Jan; 512(2):414-21. PubMed ID: 23069851
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Metabolism control over growth: a case for trehalose-6-phosphate in plants.
    Schluepmann H; Berke L; Sanchez-Perez GF
    J Exp Bot; 2012 May; 63(9):3379-90. PubMed ID: 22058405
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Trehalose-6-Phosphate as a Potential Lead Candidate for the Development of Tps1 Inhibitors: Insights from the Trehalose Biosynthesis Pathway in Diverse Yeast Species.
    Magalhães RS; De Lima KC; de Almeida DS; De Mesquita JF; Eleutherio EC
    Appl Biochem Biotechnol; 2017 Mar; 181(3):914-924. PubMed ID: 27796871
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The effect of trehalose on the fermentation performance of aged cells of Saccharomyces cerevisiae.
    Trevisol ET; Panek AD; Mannarino SC; Eleutherio EC
    Appl Microbiol Biotechnol; 2011 Apr; 90(2):697-704. PubMed ID: 21243352
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Evidence that the Saccharomyces cerevisiae CIF1 (GGS1/TPS1) gene modulates heat shock response positively.
    Hazell BW; Nevalainen H; Attfield PV
    FEBS Lett; 1995 Dec; 377(3):457-60. PubMed ID: 8549775
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Glucose signaling in yeast is partially mimicked by galactose and does not require the Tps1 protein.
    Rodríguez C; Gancedo JM
    Mol Cell Biol Res Commun; 1999 Apr; 1(1):52-8. PubMed ID: 10329478
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Global gene expression differences associated with changes in glycolytic flux and growth rate in Escherichia coli during the fermentation of glucose and xylose.
    Gonzalez R; Tao H; Shanmugam KT; York SW; Ingram LO
    Biotechnol Prog; 2002; 18(1):6-20. PubMed ID: 11822894
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Genetics of trehalose biosynthesis in desert-derived Aureobasidium melanogenum and role of trehalose in the adaptation of the yeast to extreme environments.
    Jiang H; Liu GL; Chi Z; Hu Z; Chi ZM
    Curr Genet; 2018 Apr; 64(2):479-491. PubMed ID: 29018921
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Kinetic analysis of a trehalase-overexpressing strain grown on trehalose: a new tool for respiro-fermentative transition studies in Saccharomyces cerevisiae.
    Mouret JR; Jacobsen JN; Guillouet SE
    Lett Appl Microbiol; 2006 Apr; 42(4):363-8. PubMed ID: 16599989
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Disruption of TPS2, the gene encoding the 100-kDa subunit of the trehalose-6-phosphate synthase/phosphatase complex in Saccharomyces cerevisiae, causes accumulation of trehalose-6-phosphate and loss of trehalose-6-phosphate phosphatase activity.
    De Virgilio C; Bürckert N; Bell W; Jenö P; Boller T; Wiemken A
    Eur J Biochem; 1993 Mar; 212(2):315-23. PubMed ID: 8444170
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Effect of nitrogen limitation and surplus upon trehalose metabolism in wine yeast.
    Novo MT; Beltran G; Rozès N; Guillamón JM; Mas A
    Appl Microbiol Biotechnol; 2005 Feb; 66(5):560-6. PubMed ID: 15375634
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Engineering Saccharomyces cerevisiae for improvement in ethanol tolerance by accumulation of trehalose.
    Divate NR; Chen GH; Wang PM; Ou BR; Chung YC
    Bioengineered; 2016 Nov; 7(6):445-458. PubMed ID: 27484300
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The trehalose pathway and intracellular glucose phosphates as modulators of potassium transport and general cation homeostasis in yeast.
    Mulet JM; Alejandro S; Romero C; Serrano R
    Yeast; 2004 May; 21(7):569-82. PubMed ID: 15164360
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 28.