These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 1092688)

  • 21. Respiration-coupled calcium transport by membrane vesicles from Azotobacter vinelandii.
    Barnes EM; Roberts RR; Bhattacharyya P
    Membr Biochem; 1978; 1(1-2):73-88. PubMed ID: 116111
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Method for isolation of Escherichia coli mutants with defects in the proton-translocating sector of the membrane adenosine triphosphatase complex.
    Fillingame RH; Knoebel K; Wopat AE
    J Bacteriol; 1978 Nov; 136(2):570-81. PubMed ID: 152309
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Sidedness of native membrane vesicles of Escherichia coli and orientation of the reconstituted lactose: H+ carrier.
    Seckler R; Wright JK
    Eur J Biochem; 1984 Jul; 142(2):269-79. PubMed ID: 6378637
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Energetics and molecular biology of active transport in bacterial membrane vesicles.
    Kaback HR; Ramos S; Robertson DE; Stroobant P; Tokuda H
    J Supramol Struct; 1977; 7(3-4):443-61. PubMed ID: 357844
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Chemical and functional properties of the native and reconstituted forms of the membrane-bound, aerobic glycerol-3-phosphate dehydrogenase of Escherichia coli.
    Schryvers A; Lohmeier E; Weiner JH
    J Biol Chem; 1978 Feb; 253(3):783-8. PubMed ID: 340460
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Comparison of the energetics of lactose active transport: artificial versus enzyme-associated energy source.
    Chen LI; Chen CH
    Arch Biochem Biophys; 1986 Dec; 251(2):606-15. PubMed ID: 3026249
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Energy-dependent binding of dansylgalactosides to the beta-galactoside carrier protein.
    Schuldiner S; Kerwar GK; Kaback HR; Weil R
    J Biol Chem; 1975 Feb; 250(4):1361-70. PubMed ID: 1089656
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A biochemical study of the reconstitution of D-lactate dehydrogenase-deficient membrane vesicles using fluorine-labeled components.
    Pratt EA; Jones JA; Cottam PF; Dowd SR; Ho C
    Biochim Biophys Acta; 1983 Apr; 729(2):167-75. PubMed ID: 6338924
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Anaerobic transport in Escherichia coli membrane vesicles.
    Boonstra J; Huttunen MT; Konings WN
    J Biol Chem; 1975 Sep; 250(17):6792-8. PubMed ID: 1099094
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mechanisms of active transport in isolated membrane vesicles. IV. Galactose transport by isolated membrane vesicles from Escherichia coli.
    Kerwar GK; Gordon AS; Kaback HR
    J Biol Chem; 1972 Jan; 247(1):291-7. PubMed ID: 4623127
    [No Abstract]   [Full Text] [Related]  

  • 31. Characterization of an active transport system for calcium in inverted membrane vesicles of Escherichia coli.
    Tsuchiya T; Rosen BP
    J Biol Chem; 1975 Oct; 250(19):7687-92. PubMed ID: 240836
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Reconstitution of transport dependent on D-lactate or glycerol 3-phosphate in membrane vesicles of Escherichia coli deficient in the corresponding dehydrogenases.
    Futai M
    Biochemistry; 1974 May; 13(11):2327-33. PubMed ID: 4598623
    [No Abstract]   [Full Text] [Related]  

  • 33. Active transport by membrane vesicles from anaerobically grown Escherichia coli energized by electron transfer to ferricyanide and chlorate.
    Boonstra J; Sips HJ; Konings WN
    Eur J Biochem; 1976 Oct; 69(1):35-44. PubMed ID: 791648
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Functional molecular weight of the lac carrier protein from Escherichia coli as studied by radiation inactivation analysis.
    Goldkorn T; Rimon G; Kempner ES; Kaback HR
    Proc Natl Acad Sci U S A; 1984 Feb; 81(4):1021-5. PubMed ID: 6230670
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Solubilization and partial purification of amino acid-specific components of the D-lactate dehydrogenase-coupled amino acid-transport systems (E. coli-cell membranes-sephadex-detergent-solubilized-vesicles).
    Gordon AS; Lombardi FJ; Kaback HR
    Proc Natl Acad Sci U S A; 1972 Feb; 69(2):358-62. PubMed ID: 4333978
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Membrane-bound D-lactate dehydrogenase from Escherichia coli: purification and properties.
    Pratt EA; Fung LW; Flowers JA; Ho C
    Biochemistry; 1979 Jan; 18(2):312-6. PubMed ID: 369599
    [No Abstract]   [Full Text] [Related]  

  • 37. Mechanism of autoenergized transport and nature of energy coupling for D-lactate in Escherichia coli.
    Kang SY
    J Bacteriol; 1978 Dec; 136(3):867-73. PubMed ID: 363697
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Equilibrium between two forms of the lac carrier protein in energized and nonenergized membrane vesicles from Escherichia coli.
    Rudnick G; Schildiner S; Kaback HR
    Biochemistry; 1976 Nov; 15(23):5126-31. PubMed ID: 791364
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The Archaeoglobus fulgidus D-lactate dehydrogenase is a Zn(2+) flavoprotein.
    Reed DW; Hartzell PL
    J Bacteriol; 1999 Dec; 181(24):7580-7. PubMed ID: 10601217
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Energy transduction in Escherichia coli. Genetic alteration of a membrane polypeptide of the (Ca2+,Mg2+)-ATPase.
    Simoni RD; Shandell A
    J Biol Chem; 1975 Dec; 250(24):9421-7. PubMed ID: 127796
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.