BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 10926978)

  • 1. Effect of corneal polarization axis on assessment of retinal nerve fiber layer thickness by scanning laser polarimetry.
    Greenfield DS; Knighton RW; Huang XR
    Am J Ophthalmol; 2000 Jun; 129(6):715-22. PubMed ID: 10926978
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Normative retardation data corrected for the corneal polarization axis with scanning laser polarimetry.
    Greenfield DS; Knighton RW; Feuer WJ; Schiffman JC
    Ophthalmic Surg Lasers Imaging; 2003; 34(2):165-71. PubMed ID: 12665235
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stability of corneal polarization axis measurements for scanning laser polarimetry.
    Greenfield DS; Knighton RW
    Ophthalmology; 2001 Jun; 108(6):1065-9. PubMed ID: 11382630
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Measurement of the magnitude and axis of corneal polarization with scanning laser polarimetry.
    Weinreb RN; Bowd C; Greenfield DS; Zangwill LM
    Arch Ophthalmol; 2002 Jul; 120(7):901-6. PubMed ID: 12096960
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Correction for corneal polarization axis improves the discriminating power of scanning laser polarimetry.
    Greenfield DS; Knighton RW; Feuer WJ; Schiffman JC; Zangwill L; Weinreb RN
    Am J Ophthalmol; 2002 Jul; 134(1):27-33. PubMed ID: 12095804
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Scanning laser polarimetry with variable corneal compensation: identification and correction for corneal birefringence in eyes with macular disease.
    Bagga H; Greenfield DS; Knighton RW
    Invest Ophthalmol Vis Sci; 2003 May; 44(5):1969-76. PubMed ID: 12714631
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Individualized compensation of anterior segment birefringence during scanning laser polarimetry.
    Zhou Q; Weinreb RN
    Invest Ophthalmol Vis Sci; 2002 Jul; 43(7):2221-8. PubMed ID: 12091420
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of corneal polarization axis on assessment of retinal nerve fiber layer on thickness by scanning laser polarimetry.
    Chopin NT
    Am J Ophthalmol; 2001 Apr; 131(4):528-9. PubMed ID: 11317998
    [No Abstract]   [Full Text] [Related]  

  • 9. Effect of corneal polarization axis on assessment of retinal nerve fiber layer thickness by scanning laser polarimetry.
    Kogure S; Iijima H
    Am J Ophthalmol; 2001 Mar; 131(3):403-4. PubMed ID: 11239888
    [No Abstract]   [Full Text] [Related]  

  • 10. Longitudinal measurement variability of corneal birefringence and retinal nerve fiber layer thickness in scanning laser polarimetry with variable corneal compensation.
    Mai TA; Lemij HG
    Arch Ophthalmol; 2008 Oct; 126(10):1359-64. PubMed ID: 18852413
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Scanning laser polarimetry in monkey eyes using variable corneal polarization compensation.
    Weinreb RN; Bowd C; Zangwill LM
    J Glaucoma; 2002 Oct; 11(5):378-84. PubMed ID: 12362075
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of individualized compensation for anterior segment birefringence on retinal nerve fiber layer assessments as determined by scanning laser polarimetry.
    Choplin NT; Zhou Q; Knighton RW
    Ophthalmology; 2003 Apr; 110(4):719-25. PubMed ID: 12689893
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Scanning laser polarimetry with variable corneal compensation and optical coherence tomography in normal and glaucomatous eyes.
    Bagga H; Greenfield DS; Feuer W; Knighton RW
    Am J Ophthalmol; 2003 Apr; 135(4):521-9. PubMed ID: 12654370
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessment of the retinal nerve fiber layer of the normal and glaucomatous monkey with scanning laser polarimetry.
    Weinreb RN; Bowd C; Zangwill LM
    Trans Am Ophthalmol Soc; 2002; 100():161-6; discussion 166-7. PubMed ID: 12545690
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Scanning laser polarimetry of the normal human retinal nerve fiber layer: a quantitative analysis.
    Morgan JE; Waldock A
    Am J Ophthalmol; 2000 Jan; 129(1):76-82. PubMed ID: 10653416
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Retinal nerve fiber layer and physiological central corneal thickness.
    Iester M; Mermoud A
    J Glaucoma; 2001 Jun; 10(3):158-62. PubMed ID: 11442176
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Association between scanning laser polarimetry measurements using variable corneal polarization compensation and visual field sensitivity in glaucomatous eyes.
    Bowd C; Zangwill LM; Weinreb RN
    Arch Ophthalmol; 2003 Jul; 121(7):961-6. PubMed ID: 12860798
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Retinal nerve fiber layer measurements do not change after LASIK for high myopia as measured by scanning laser polarimetry with custom compensation.
    Choplin NT; Schallhorn SC; Sinai M; Tanzer D; Tidwell JL; Zhou Q
    Ophthalmology; 2005 Jan; 112(1):92-7. PubMed ID: 15629826
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of laser in situ keratomileusis on retinal nerve fiber layer thickness measurements by scanning laser polarimetry.
    Kook MS; Lee S; Tchah H; Sung K; Park R; Kim K
    J Cataract Refract Surg; 2002 Apr; 28(4):670-5. PubMed ID: 11955909
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Reliable parameters for assessing the birefringence of retinal nerve fiber layer under various conditions of corneal birefringence].
    Kogure S; Chiba T; Iijima H; Kohwa H; Tsukahara S
    Nippon Ganka Gakkai Zasshi; 2004 May; 108(5):291-6. PubMed ID: 15188602
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.