These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 10928319)

  • 1. Role of catecholaminergic and cyclic AMP systems in psychological dependence on phencyclidine: a study in mutant mice.
    Noda Y; Nabeshima T
    Jpn J Pharmacol; 2000 Jun; 83(2):89-94. PubMed ID: 10928319
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Involvement of signal transduction cascade via dopamine-D1 receptors in phencyclidine dependence.
    Noda Y; Nabeshima T
    Ann N Y Acad Sci; 2004 Oct; 1025():62-8. PubMed ID: 15542701
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [The mechanisms of morphine dependence and it's withdrawal syndrome: study in mutant mice].
    Noda Y; Mamiya T; Nabeshima T
    Nihon Yakurigaku Zasshi; 2001 Jan; 117(1):21-6. PubMed ID: 11233292
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Involvement of dopaminergic system in phencyclidine-induced place preference in mice pretreated with phencyclidine repeatedly.
    Noda Y; Miyamoto Y; Mamiya T; Kamei H; Furukawa H; Nabeshima T
    J Pharmacol Exp Ther; 1998 Jul; 286(1):44-51. PubMed ID: 9655840
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neuronal mechanisms of phencyclidine-induced place aversion and preference in the conditioned place preference task.
    Noda Y; Nabeshima T
    Methods Find Exp Clin Pharmacol; 1998 Sep; 20(7):607-11. PubMed ID: 9819806
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Possible mechanisms in latent learning formation investigated by using mutant mice].
    Noda Y
    Nihon Yakurigaku Zasshi; 2001 Mar; 117(3):169-76. PubMed ID: 11288486
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Learning/memory and drug dependence].
    Noda Y; Nabeshima T
    Nihon Yakurigaku Zasshi; 2002 Apr; 119(4):213-7. PubMed ID: 11979726
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Activation of a nitric-oxide-sensitive cAMP pathway with phencyclidine: elevated hippocampal cAMP levels are temporally associated with deficits in prepulse inhibition.
    Klamer D; PĂ„lsson E; Fejgin K; Zhang J; Engel JA; Svensson L
    Psychopharmacology (Berl); 2005 May; 179(2):479-88. PubMed ID: 15619121
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Involvement of a dysfunctional dopamine-D1/N-methyl-d-aspartate-NR1 and Ca2+/calmodulin-dependent protein kinase II pathway in the impairment of latent learning in a model of schizophrenia induced by phencyclidine.
    Mouri A; Noda Y; Noda A; Nakamura T; Tokura T; Yura Y; Nitta A; Furukawa H; Nabeshima T
    Mol Pharmacol; 2007 Jun; 71(6):1598-609. PubMed ID: 17344353
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acute phencyclidine induces aversion, but repeated phencyclidine induces preference in the place conditioning test in rats.
    Kitaichi K; Noda Y; Hasegawa T; Furukawa H; Nabeshima T
    Eur J Pharmacol; 1996 Dec; 318(1):7-9. PubMed ID: 9007505
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of phencyclidine-induced effects on neuropeptide Y systems in the rat caudate-putamen.
    Midgley LP; Bush LG; Gibb JW; Hanson GR
    Brain Res; 1992 Oct; 593(1):89-96. PubMed ID: 1360868
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The glycine/NMDA receptor antagonist, R-(+)-HA-966, blocks activation of the mesolimbic dopaminergic system induced by phencyclidine and dizocilpine (MK-801) in rodents.
    Bristow LJ; Hutson PH; Thorn L; Tricklebank MD
    Br J Pharmacol; 1993 Apr; 108(4):1156-63. PubMed ID: 8485625
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [3H]Spiperone binding in the rat striatum during the development of physical dependence on phencyclidine and after withdrawal.
    Spain JW; Klingman GI; Hruska RE
    Neurosci Lett; 1985 Jul; 58(1):67-72. PubMed ID: 2931624
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Repeated phencyclidine treatment induces negative symptom-like behavior in forced swimming test in mice: imbalance of prefrontal serotonergic and dopaminergic functions.
    Noda Y; Kamei H; Mamiya T; Furukawa H; Nabeshima T
    Neuropsychopharmacology; 2000 Oct; 23(4):375-87. PubMed ID: 10989264
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional changes in neuronal systems induced by phencyclidine administration.
    Nabeshima T; Kitaichi K; Noda Y
    Ann N Y Acad Sci; 1996 Oct; 801():29-38. PubMed ID: 8959021
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of tolerance and supersensitivity to phencyclidine in rats after repeated administration of phencyclidine.
    Nabeshima T; Fukaya H; Yamaguchi K; Ishikawa K; Furukawa H; Kameyama T
    Eur J Pharmacol; 1987 Mar; 135(1):23-33. PubMed ID: 3569423
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Response of extrapyramidal and limbic neurotensin systems to phencyclidine treatment.
    Hanson GR; Midgley LP; Bush LG; Gibb JW
    Eur J Pharmacol; 1995 May; 278(2):167-73. PubMed ID: 7672001
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of nitric oxide in the development of tolerance and sensitization to behavioural effects of phencyclidine in mice.
    Noda Y; Yamada K; Komori Y; Sugihara H; Furukawa H; Nabeshima T
    Br J Pharmacol; 1996 Apr; 117(7):1579-85. PubMed ID: 8730757
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of the phencyclidine-induced increase in prefrontal cortical dopamine metabolism in the rat.
    Umino A; Takahashi K; Nishikawa T
    Br J Pharmacol; 1998 May; 124(2):377-85. PubMed ID: 9641556
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phencyclidine supersensitivity in rats with neonatal dopamine loss.
    Moy SS; Breese GR
    Psychopharmacology (Berl); 2002 May; 161(3):255-62. PubMed ID: 12021828
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.