BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 10928548)

  • 81. The effects of tropospheric ozone and elevated carbon dioxide on potato (Solanum tuberosum L. cv. Bintje) growth and yield.
    Persson K; Danielsson H; Selldén G; Pleijel H
    Sci Total Environ; 2003 Jul; 310(1-3):191-201. PubMed ID: 12812743
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Glutamine synthetase of potato (Solanum tuberosum L. cv. Desiree) plants: cell- and organ-specific expression and differential developmental regulation reveal specific roles in nitrogen assimilation and mobilization.
    Teixeira J; Pereira S; Cánovas F; Salema R
    J Exp Bot; 2005 Feb; 56(412):663-71. PubMed ID: 15642719
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Systemic Potato virus X infection induces defence gene expression and accumulation of β-phenylethylamine-alkaloids in potato.
    Niehl A; Lacomme C; Erban A; Kopka J; Krämer U; Fisahn J
    Funct Plant Biol; 2006 Jun; 33(6):593-604. PubMed ID: 32689267
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Phenol metabolism, phytoalexins, and respiration in potato tuber tissue treated with Fatty Acid.
    Maina G; Allen RD; Bhatia SK; Stelzig DA
    Plant Physiol; 1984 Nov; 76(3):735-8. PubMed ID: 16663915
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Phenylalanine ammonia-lyase and cinnamic acid 4-hydroxylase: Product repression of the level of enzyme activity in potato tuber discs.
    Lamb CJ; Rubery PH
    Planta; 1976 Jan; 130(3):283-90. PubMed ID: 24424641
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Time course and spatial distribution of phenylalanine ammonia-lyase and peroxidase activity in wounded potato tuber tissue.
    Borchert R
    Plant Physiol; 1978 Nov; 62(5):789-93. PubMed ID: 16660607
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Sequential Induction of Phenylalanine Ammonia-lyase and a Lyase-inactivating System in Potato Tuber Disks.
    Zucker M
    Plant Physiol; 1968 Mar; 43(3):365-74. PubMed ID: 16656772
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Biochemistry of Suberization: omega-Hydroxyacid Oxidation in Enzyme Preparations from Suberizing Potato Tuber Disks.
    Agrawal VP; Kolattukudy PE
    Plant Physiol; 1977 Apr; 59(4):667-72. PubMed ID: 16659915
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Abscisic Acid stimulation of suberization : induction of enzymes and deposition of polymeric components and associated waxes in tissue cultures of potato tuber.
    Cottle W; Kolattukudy PE
    Plant Physiol; 1982 Sep; 70(3):775-80. PubMed ID: 16662574
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Formation of p-coumaric acid and o-coumaric acid from L-phenylalanine by microsomal membrane fractions from potato: Evidence of membrane-bound enzyme complexes.
    Czichi U; Kindl H
    Planta; 1975 Jan; 125(2):115-25. PubMed ID: 24435336
    [TBL] [Abstract][Full Text] [Related]  

  • 91. A role for ca in the elicitation of rishitin and lubimin accumulation in potato tuber tissue.
    Zook MN; Rush JS; Kuć JA
    Plant Physiol; 1987 Jun; 84(2):520-5. PubMed ID: 16665472
    [TBL] [Abstract][Full Text] [Related]  

  • 92. An in vitro control mechanism for potato stress metabolite biosynthesis.
    Alves LM; Kalan EB; Heisler EG
    Plant Physiol; 1981 Dec; 68(6):1465-7. PubMed ID: 16662127
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Dependence of Wound-induced Respiration in Potato Slices on the Time-restricted Actinomycin-sensitive Biosynthesis of Phospholipid.
    Waring AJ; Laties GG
    Plant Physiol; 1977 Jul; 60(1):5-10. PubMed ID: 16660041
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Plant tyrosine decarboxylase can be strongly inhibited by L-α-aminooxy-β-phenylpropionate.
    Chapple CC; Walker MA; Ellis BE
    Planta; 1986 Jan; 167(1):101-5. PubMed ID: 24241738
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Induction of Phenylalanine Deaminase by Light and its Relation to Chlorogenic Acid Synthesis in Potato Tuber Tissue.
    Zucker M
    Plant Physiol; 1965 Sep; 40(5):779-84. PubMed ID: 16656157
    [No Abstract]   [Full Text] [Related]  

  • 96. Some Factors which Affect the Synthesis of Chlorogenic Acid in Disks of Potato Tuber.
    Zucker M; Levy CC
    Plant Physiol; 1959 Mar; 34(2):108-12. PubMed ID: 16655184
    [No Abstract]   [Full Text] [Related]  

  • 97. Hempseed Lignanamides Rich-Fraction: Chemical Investigation and Cytotoxicity towards U-87 Glioblastoma Cells.
    Nigro E; Crescente G; Formato M; Pecoraro MT; Mallardo M; Piccolella S; Daniele A; Pacifico S
    Molecules; 2020 Feb; 25(5):. PubMed ID: 32110947
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Characterization of rice tryptophan decarboxylases and their direct involvement in serotonin biosynthesis in transgenic rice.
    Kang S; Kang K; Lee K; Back K
    Planta; 2007 Dec; 227(1):263-72. PubMed ID: 17763868
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Beta-1,3-glucooligosaccharide induced activation of four enzymes responsible for N-p-coumaroyloctopamine biosynthesis in potato (Solanum tuberosum cv.) tuber tissue.
    Matsuda F; Miyagawa H; Ueno T
    Z Naturforsch C J Biosci; 2000; 55(5-6):373-82. PubMed ID: 10928548
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Involvement of reactive oxygen species in the induction of (S)-N-p-coumaroyloctopamine accumulation by beta-1,3-glucooligosaccharide elicitors in potato tuber tissues.
    Matsuda F; Miyagawa H; Ueno T
    Z Naturforsch C J Biosci; 2001; 56(3-4):228-34. PubMed ID: 11371013
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.