These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 10929098)

  • 1. The transfer of DNA from agrobacterium tumefaciens into plants: a feast of fundamental insights.
    Zupan J; Muth TR; Draper O; Zambryski P
    Plant J; 2000 Jul; 23(1):11-28. PubMed ID: 10929098
    [No Abstract]   [Full Text] [Related]  

  • 2. Transfer of T-DNA from Agrobacterium to the plant cell.
    Zupan JR; Zambryski P
    Plant Physiol; 1995 Apr; 107(4):1041-7. PubMed ID: 7770515
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DNA transfer from Agrobacterium to plant cells in crown gall tumor disease.
    Das A
    Subcell Biochem; 1998; 29():343-63. PubMed ID: 9594653
    [No Abstract]   [Full Text] [Related]  

  • 4. 1-Aminocyclopropane-1-carboxylate deaminase enhances Agrobacterium tumefaciens-mediated gene transfer into plant cells.
    Nonaka S; Sugawara M; Minamisawa K; Yuhashi K; Ezura H
    Appl Environ Microbiol; 2008 Apr; 74(8):2526-8. PubMed ID: 18310418
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Control of T-DNA Transfer from
    Denkovskienė E; Paškevičius Š; Stankevičiūtė J; Gleba Y; Ražanskienė A
    Mol Plant Microbe Interact; 2020 Sep; 33(9):1142-1149. PubMed ID: 32720865
    [TBL] [Abstract][Full Text] [Related]  

  • 6. T-DNA of Agrobacterium tumefaciens: 25 years and counting.
    Binns AN
    Trends Plant Sci; 2002 May; 7(5):231-3. PubMed ID: 11992829
    [No Abstract]   [Full Text] [Related]  

  • 7. [Opine biosynthesis and catabolism genes of Agrobacterium tumefaciens and Agrobacterium rhizogenes].
    Vladimirov IA; Matveeva TV; Lutova LA
    Genetika; 2015 Feb; 51(2):137-46. PubMed ID: 25966579
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Three methods for the introduction of foreign DNA into Agrobacterium.
    Wise AA; Liu Z; Binns AN
    Methods Mol Biol; 2006; 343():43-53. PubMed ID: 16988332
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Ti plasmid increases the efficiency of Agrobacterium tumefaciens as a recipient in virB-mediated conjugal transfer of an IncQ plasmid.
    Bohne J; Yim A; Binns AN
    Proc Natl Acad Sci U S A; 1998 Jun; 95(12):7057-62. PubMed ID: 9618538
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transformation of barley (Hordeum vulgare L.) by Agrobacterium tumefaciens infection of in vitro cultured ovules.
    Holme IB; Brinch-Pedersen H; Lange M; Holm PB
    Methods Mol Biol; 2012; 847():151-61. PubMed ID: 22351006
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gene insertion patterns and sites.
    Vain P; Thole V
    Methods Mol Biol; 2009; 478():203-26. PubMed ID: 19009448
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Agrobacterium tumefaciens-mediated transformation of plants by the pTF-FC2 plasmid is efficient and strictly dependent on the MobA protein.
    Dube T; Kovalchuk I; Hohn B; Thomson JA
    Plant Mol Biol; 2004 Jul; 55(4):531-9. PubMed ID: 15604698
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Agrobacterium tumefaciens-mediated transformation of yeast.
    Piers KL; Heath JD; Liang X; Stephens KM; Nester EW
    Proc Natl Acad Sci U S A; 1996 Feb; 93(4):1613-8. PubMed ID: 8643679
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sequence and distribution of IS1312: evidence for horizontal DNA transfer from Rhizobium meliloti to Agrobacterium tumefaciens.
    Deng W; Gordon MP; Nester EW
    J Bacteriol; 1995 May; 177(9):2554-9. PubMed ID: 7730290
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Promiscuous DNA transfer system of Agrobacterium tumefaciens: role of the virB operon in sex pilus assembly and synthesis.
    Kado CI
    Mol Microbiol; 1994 Apr; 12(1):17-22. PubMed ID: 7914664
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Controlling the interplay between Agrobacterium tumefaciens and plants during the transient expression of proteins.
    Buyel JF
    Bioengineered; 2015; 6(4):242-4. PubMed ID: 25997443
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sorghum (Sorghum bicolor L.).
    Zhao ZY
    Methods Mol Biol; 2006; 343():233-44. PubMed ID: 16988348
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genetic analysis of the virD operon of Agrobacterium tumefaciens: a search for functions involved in transport of T-DNA into the plant cell nucleus and in T-DNA integration.
    Koukolíková-Nicola Z; Raineri D; Stephens K; Ramos C; Tinland B; Nester EW; Hohn B
    J Bacteriol; 1993 Feb; 175(3):723-31. PubMed ID: 8380800
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of the Agrobacterium tumefaciens C58 T-DNA genes e and f and their impact on crown gall tumour formation.
    Broer I; Dröge-Laser W; Barker RF; Neumann K; Klipp W; Pühler A
    Plant Mol Biol; 1995 Jan; 27(1):41-57. PubMed ID: 7865795
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Agrobacterium tumefaciens Gene Transfer: How a Plant Pathogen Hacks the Nuclei of Plant and Nonplant Organisms.
    Bourras S; Rouxel T; Meyer M
    Phytopathology; 2015 Oct; 105(10):1288-301. PubMed ID: 26151736
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.