BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 10930574)

  • 1. Selective phosphotyrosine phosphatase inhibition and increased ceramide formation is associated with B-cell death by apoptosis.
    Dawson G; Kilkus J; Schieven GL
    FEBS Lett; 2000 Aug; 478(3):233-6. PubMed ID: 10930574
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lineage-specific induction of B cell apoptosis and altered signal transduction by the phosphotyrosine phosphatase inhibitor bis(maltolato)oxovanadium(IV).
    Schieven GL; Wahl AF; Myrdal S; Grosmaire L; Ledbetter JA
    J Biol Chem; 1995 Sep; 270(35):20824-31. PubMed ID: 7657667
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Involvement of insulin-like growth factor type 1 receptor and protein kinase Cdelta in bis(maltolato)oxovanadium(IV)-induced phosphorylation of protein kinase B in HepG2 cells.
    Mehdi MZ; Vardatsikos G; Pandey SK; Srivastava AK
    Biochemistry; 2006 Sep; 45(38):11605-15. PubMed ID: 16981720
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of oxidative stress in the action of vanadium phosphotyrosine phosphatase inhibitors. Redox independent activation of NF-kappaB.
    Krejsa CM; Nadler SG; Esselstyn JM; Kavanagh TJ; Ledbetter JA; Schieven GL
    J Biol Chem; 1997 Apr; 272(17):11541-9. PubMed ID: 9111069
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanisms of apoptosis in embryonic cortical neurons (E6 and E7) in culture involve lipid signalling, protein phosphorylation and caspase activation.
    Dawson G
    Int J Dev Neurosci; 2000; 18(2-3):247-57. PubMed ID: 10715579
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A nonspecific phosphotyrosine phosphatase inhibitor, bis(maltolato)oxovanadium(IV), improves glucose tolerance and prevents diabetes in Zucker diabetic fatty rats.
    Winter CL; Lange JS; Davis MG; Gerwe GS; Downs TR; Peters KG; Kasibhatla B
    Exp Biol Med (Maywood); 2005 Mar; 230(3):207-16. PubMed ID: 15734724
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of a CD43/leukosialin-mediated pathway for inducing apoptosis in human T-lymphoblastoid cells.
    Brown TJ; Shuford WW; Wang WC; Nadler SG; Bailey TS; Marquardt H; Mittler RS
    J Biol Chem; 1996 Nov; 271(44):27686-95. PubMed ID: 8910360
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bis(maltolato)oxovanadium(IV) Induces Angiogenesis via Phosphorylation of VEGFR2.
    Parma L; Peters HAB; Johansson ME; GutiƩrrez S; Meijerink H; de Kimpe S; de Vries MR; Quax PHA
    Int J Mol Sci; 2020 Jun; 21(13):. PubMed ID: 32629855
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular mechanism of bis(maltolato)oxovanadium(IV)-induced insulin signaling in 3T3-L1 and IM9 cells: impact of dexamethasone.
    Bose S; Farah MA; Jung HC; Lee JH; Kim Y
    J Mol Endocrinol; 2007 Jun; 38(6):627-49. PubMed ID: 17556533
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibition of protein tyrosine phosphatase 1B and alkaline phosphatase by bis(maltolato)oxovanadium (IV).
    Li M; Ding W; Baruah B; Crans DC; Wang R
    J Inorg Biochem; 2008 Oct; 102(10):1846-53. PubMed ID: 18728000
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bis(maltolato)oxovanadium(IV) (BMOV) Attenuates Apoptosis in High Glucose-Treated Cardiac Cells and Diabetic Rat Hearts by Regulating the Unfolded Protein Responses (UPRs).
    Cong XQ; Piao MH; Li Y; Xie L; Liu Y
    Biol Trace Elem Res; 2016 Oct; 173(2):390-8. PubMed ID: 26983714
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bis(maltolato)oxovanadium(IV) inhibits the activity of PTP1B in Zucker rat skeletal muscle in vivo.
    Mohammad A; Wang J; McNeill JH
    Mol Cell Biochem; 2002 Jan; 229(1-2):125-8. PubMed ID: 11936837
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tyrosine phosphorylation-dependent activation of NF-kappa B. Requirement for p56 LCK and ZAP-70 protein tyrosine kinases.
    Livolsi A; Busuttil V; Imbert V; Abraham RT; Peyron JF
    Eur J Biochem; 2001 Mar; 268(5):1508-15. PubMed ID: 11231305
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tyrosine phosphatase inhibition augments collateral blood flow in a rat model of peripheral vascular disease.
    Carr AN; Davis MG; Eby-Wilkens E; Howard BW; Towne BA; Dufresne TE; Peters KG
    Am J Physiol Heart Circ Physiol; 2004 Jul; 287(1):H268-76. PubMed ID: 14988069
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanism of insulin sensitization by BMOV (bis maltolato oxo vanadium); unliganded vanadium (VO4) as the active component.
    Peters KG; Davis MG; Howard BW; Pokross M; Rastogi V; Diven C; Greis KD; Eby-Wilkens E; Maier M; Evdokimov A; Soper S; Genbauffe F
    J Inorg Biochem; 2003 Aug; 96(2-3):321-30. PubMed ID: 12888267
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The anti-diabetic bis(maltolato)oxovanadium(IV) decreases lipid order while increasing insulin receptor localization in membrane microdomains.
    Winter PW; Al-Qatati A; Wolf-Ringwall AL; Schoeberl S; Chatterjee PB; Barisas BG; Roess DA; Crans DC
    Dalton Trans; 2012 Jun; 41(21):6419-30. PubMed ID: 22569684
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The tyrosine phosphatase inhibitor bis(maltolato)oxovanadium attenuates myocardial reperfusion injury by opening ATP-sensitive potassium channels.
    Liem DA; Gho CC; Gho BC; Kazim S; Manintveld OC; Verdouw PD; Duncker DJ
    J Pharmacol Exp Ther; 2004 Jun; 309(3):1256-62. PubMed ID: 14993257
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Increased tyrosine kinase activity but not calcium mobilization is required for ceramide-induced apoptosis.
    Stewart CE; Mihai R; Holly JM
    Exp Cell Res; 1999 Aug; 250(2):329-38. PubMed ID: 10413587
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oxovanadium-based inhibitors can drive redox-sensitive cytotoxicity in neuroblastoma cells and synergise strongly with buthionine sulfoximine.
    Clark O; Park I; Di Florio A; Cichon AC; Rustin S; Jugov R; Maeshima R; Stoker AW
    Cancer Lett; 2015 Feb; 357(1):316-327. PubMed ID: 25444896
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intracellular CD22 rapidly moves to the cell surface in a tyrosine kinase-dependent manner following antigen receptor stimulation.
    Sherbina NV; Linsley PS; Myrdal S; Grosmaire LS; Ledbetter JA; Schieven GL
    J Immunol; 1996 Nov; 157(10):4390-8. PubMed ID: 8906814
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.