These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 10930741)

  • 1. Structural studies of microcosm dental plaques grown under different nutritional conditions.
    Pratten J; Andrews CS; Craig DQ; Wilson M
    FEMS Microbiol Lett; 2000 Aug; 189(2):215-8. PubMed ID: 10930741
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Determining the spatial distribution of viable and nonviable bacteria in hydrated microcosm dental plaques by viability profiling.
    Hope CK; Clements D; Wilson M
    J Appl Microbiol; 2002; 93(3):448-55. PubMed ID: 12174043
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A comparison of human dental plaque microcosm biofilms grown in an undefined medium and a chemically defined artificial saliva.
    Wong L; Sissons C
    Arch Oral Biol; 2001 Jun; 46(6):477-86. PubMed ID: 11311195
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Caries-related plaque microcosm biofilms developed in microplates.
    Filoche SK; Soma KJ; Sissons CH
    Oral Microbiol Immunol; 2007 Apr; 22(2):73-9. PubMed ID: 17311629
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of inoculum source and fluid shear force on the development of in vitro oral multispecies biofilms.
    Fernández CE; Aspiras MB; Dodds MW; González-Cabezas C; Rickard AH
    J Appl Microbiol; 2017 Mar; 122(3):796-808. PubMed ID: 27981713
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biofilm structure and cell vitality in a laboratory model of subgingival plaque.
    Hope CK; Wilson M
    J Microbiol Methods; 2006 Sep; 66(3):390-8. PubMed ID: 16487610
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Antimicrobial susceptibility and composition of microcosm dental plaques supplemented with sucrose.
    Pratten J; Wilson M
    Antimicrob Agents Chemother; 1999 Jul; 43(7):1595-9. PubMed ID: 10390209
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Association between the cariogenicity of a dental microcosm biofilm and its red fluorescence detected by Quantitative Light-induced Fluorescence-Digital (QLF-D).
    Lee ES; Kang SM; Ko HY; Kwon HK; Kim BI
    J Dent; 2013 Dec; 41(12):1264-70. PubMed ID: 24012520
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A reproducible oral microcosm biofilm model for testing dental materials.
    Rudney JD; Chen R; Lenton P; Li J; Li Y; Jones RS; Reilly C; Fok AS; Aparicio C
    J Appl Microbiol; 2012 Dec; 113(6):1540-53. PubMed ID: 22925110
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of orthodontic bonding materials on dental plaque accumulation and composition in vitro.
    Badawi H; Evans RD; Wilson M; Ready D; Noar JH; Pratten J
    Biomaterials; 2003 Aug; 24(19):3345-50. PubMed ID: 12763461
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microcosm biofilms originating from children with different caries experience have similar cariogenicity under successive sucrose challenges.
    Azevedo MS; van de Sande FH; Romano AR; Cenci MS
    Caries Res; 2011; 45(6):510-7. PubMed ID: 21967836
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A high-throughput microfluidic dental plaque biofilm system to visualize and quantify the effect of antimicrobials.
    Nance WC; Dowd SE; Samarian D; Chludzinski J; Delli J; Battista J; Rickard AH
    J Antimicrob Chemother; 2013 Nov; 68(11):2550-60. PubMed ID: 23800904
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of chlorhexidine on multi-species biofilms.
    Wilson M; Patel H; Noar JH
    Curr Microbiol; 1998 Jan; 36(1):13-8. PubMed ID: 9405740
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Patterns and rates of growth of microcosm dental plaque biofilms.
    Sissons CH; Wong L; Cutress TW
    Oral Microbiol Immunol; 1995 Jun; 10(3):160-7. PubMed ID: 7567065
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Response of single species biofilms and microcosm dental plaques to pulsing with chlorhexidine.
    Pratten J; Smith AW; Wilson M
    J Antimicrob Chemother; 1998 Oct; 42(4):453-9. PubMed ID: 9818743
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transfer of TN916-like elements in microcosm dental plaques.
    Roberts AP; Cheah G; Ready D; Pratten J; Wilson M; Mullany P
    Antimicrob Agents Chemother; 2001 Oct; 45(10):2943-6. PubMed ID: 11557498
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In situ and non-invasive detection of specific bacterial species in oral biofilms using fluorescently labeled monoclonal antibodies.
    Gu F; Lux R; Du-Thumm L; Stokes I; Kreth J; Anderson MH; Wong DT; Wolinsky L; Sullivan R; Shi W
    J Microbiol Methods; 2005 Aug; 62(2):145-60. PubMed ID: 15935497
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microbiota of plaque microcosm biofilms: effect of three times daily sucrose pulses in different simulated oral environments.
    Sissons CH; Anderson SA; Wong L; Coleman MJ; White DC
    Caries Res; 2007; 41(5):413-22. PubMed ID: 17713343
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A fluorescence assay to determine the viable biomass of microcosm dental plaque biofilms.
    Filoche SK; Coleman MJ; Angker L; Sissons CH
    J Microbiol Methods; 2007 Jun; 69(3):489-96. PubMed ID: 17408789
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of the Inoculum Source on the Cariogenicity of in vitro Microcosm Biofilms.
    Signori C; van de Sande FH; Maske TT; de Oliveira EF; Cenci MS
    Caries Res; 2016; 50(2):97-103. PubMed ID: 26919718
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.