These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 10931775)

  • 1. A computational model of information processing in the frontal cortex and basal ganglia.
    Amos A
    J Cogn Neurosci; 2000 May; 12(3):505-19. PubMed ID: 10931775
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sensory processing in Parkinson's and Huntington's disease: investigations with 3D H(2)(15)O-PET.
    Boecker H; Ceballos-Baumann A; Bartenstein P; Weindl A; Siebner HR; Fassbender T; Munz F; Schwaiger M; Conrad B
    Brain; 1999 Sep; 122 ( Pt 9)():1651-65. PubMed ID: 10468505
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The frontal cortex-basal ganglia system in primates.
    Wise SP; Murray EA; Gerfen CR
    Crit Rev Neurobiol; 1996; 10(3-4):317-56. PubMed ID: 8978985
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Open interconnected model of basal ganglia-thalamocortical circuitry and its relevance to the clinical syndrome of Huntington's disease.
    Joel D
    Mov Disord; 2001 May; 16(3):407-23. PubMed ID: 11391734
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Striatal contribution to cognition: working memory and executive function in Parkinson's disease before and after unilateral posteroventral pallidotomy.
    Jahanshahi M; Rowe J; Saleem T; Brown RG; Limousin-Dowsey P; Rothwell JC; Thomas DG; Quinn NP
    J Cogn Neurosci; 2002 Feb; 14(2):298-310. PubMed ID: 11970793
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Visual object and visuospatial cognition in Huntington's disease: implications for information processing in corticostriatal circuits.
    Lawrence AD; Watkins LH; Sahakian BJ; Hodges JR; Robbins TW
    Brain; 2000 Jul; 123 ( Pt 7)():1349-64. PubMed ID: 10869048
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Static and dynamic state feedback control model of basal ganglia-thalamocortical loops.
    Lörincz A
    Int J Neural Syst; 1997 Jun; 8(3):339-57. PubMed ID: 9427107
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Subcortical dysfunction in schizophrenia: a comparison with Parkinson's disease and Huntington's disease.
    Hanes KR; Andrewes DG; Pantelis C; Chiu E
    Schizophr Res; 1996 May; 19(2-3):121-8. PubMed ID: 8789910
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional anatomy of thalamus and basal ganglia.
    Herrero MT; Barcia C; Navarro JM
    Childs Nerv Syst; 2002 Aug; 18(8):386-404. PubMed ID: 12192499
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Basal ganglia role in learning rewarded actions and executing previously learned choices: Healthy and diseased states.
    Mulcahy G; Atwood B; Kuznetsov A
    PLoS One; 2020; 15(2):e0228081. PubMed ID: 32040519
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Competition between feedback loops underlies normal and pathological dynamics in the basal ganglia.
    Leblois A; Boraud T; Meissner W; Bergman H; Hansel D
    J Neurosci; 2006 Mar; 26(13):3567-83. PubMed ID: 16571765
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Task-set switching deficits in early-stage Huntington's disease: implications for basal ganglia function.
    Aron AR; Watkins L; Sahakian BJ; Monsell S; Barker RA; Robbins TW
    J Cogn Neurosci; 2003 Jul; 15(5):629-42. PubMed ID: 12965037
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conditional routing of information to the cortex: a model of the basal ganglia's role in cognitive coordination.
    Stocco A; Lebiere C; Anderson JR
    Psychol Rev; 2010 Apr; 117(2):541-74. PubMed ID: 20438237
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Basal Ganglia dysfunctions in movement disorders: What can be learned from computational simulations.
    Schroll H; Hamker FH
    Mov Disord; 2016 Nov; 31(11):1591-1601. PubMed ID: 27393040
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Perseveration for novel stimuli in Parkinson's disease: an evaluation based on event-related potentials topography.
    Hozumi A; Hirata K; Tanaka H; Yamazaki K
    Mov Disord; 2000 Sep; 15(5):835-42. PubMed ID: 11009188
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Voluntary saccade inhibition deficits correlate with extended white-matter cortico-basal atrophy in Huntington's disease.
    Vaca-Palomares I; Coe BC; Brien DC; Campos-Romo A; Munoz DP; Fernandez-Ruiz J
    Neuroimage Clin; 2017; 15():502-512. PubMed ID: 28649493
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Cognitive functions and the basal ganglia: the model of Parkinson disease].
    Dubois B; Malapani C; Verin M; Rogelet P; Deweer B; Pillon B
    Rev Neurol (Paris); 1994 Nov; 150(11):763-70. PubMed ID: 7597369
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A model for altered neural network dynamics related to prehension movements in Parkinson disease.
    Molina-Vilaplana J; Contreras-Vidal JL; Herrero-Ezquerro MT; Lopez-Coronado J
    Biol Cybern; 2009 Apr; 100(4):271-87. PubMed ID: 19229555
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A neural model of working memory processes in normal subjects, Parkinson's disease and schizophrenia for fMRI design and predictions.
    Monchi O; Taylor JG; Dagher A
    Neural Netw; 2000; 13(8-9):953-73. PubMed ID: 11156204
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selection of actions in the basal ganglia-thalamocortical circuits: review and model.
    Kropotov JD; Etlinger SC
    Int J Psychophysiol; 1999 Mar; 31(3):197-217. PubMed ID: 10076774
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.