BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 10931890)

  • 1. Enzymically mediated bioprecipitation of uranium by a Citrobacter sp. : a concerted role for exocellular lipopolysaccharide and associated phosphatase in biomineral formation.
    Macaskie LE; Bonthrone KM; Yong P; Goddard DT
    Microbiology (Reading); 2000 Aug; 146 ( Pt 8)():1855-1867. PubMed ID: 10931890
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Uranium bioaccumulation by a Citrobacter sp. as a result of enzymically mediated growth of polycrystalline HUO2PO4.
    Macaskie LE; Empson RM; Cheetham AK; Grey CP; Skarnulis AJ
    Science; 1992 Aug; 257(5071):782-4. PubMed ID: 1496397
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Localization of enzymically enhanced heavy metal accumulation by Citrobacter sp. and metal accumulation in vitro by liposomes containing entrapped enzyme.
    Jeong BC; Hawes C; Bonthrone KM; Macaskie LE
    Microbiology (Reading); 1997 Jul; 143 ( Pt 7)():2497-2507. PubMed ID: 9245830
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interaction of Uranium with Bacterial Cell Surfaces: Inferences from Phosphatase-Mediated Uranium Precipitation.
    Kulkarni S; Misra CS; Gupta A; Ballal A; Apte SK
    Appl Environ Microbiol; 2016 Aug; 82(16):4965-74. PubMed ID: 27287317
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The use of Escherichia coli bearing a phoN gene for the removal of uranium and nickel from aqueous flows.
    Basnakova G; Stephens ER; Thaller MC; Rossolini GM; Macaskie LE
    Appl Microbiol Biotechnol; 1998 Aug; 50(2):266-72. PubMed ID: 9763695
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bioaccumulation of nickel by intercalation into polycrystalline hydrogen uranyl phosphate deposited via an enzymatic mechanism.
    Bonthrone KM; Basnakova G; Lin F; Macaskie LE
    Nat Biotechnol; 1996 May; 14(5):635-8. PubMed ID: 9630957
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enzymically accelerated biomineralization of heavy metals: application to the removal of americium and plutonium from aqueous flows.
    Macaskie LE; Jeong BC; Tolley MR
    FEMS Microbiol Rev; 1994 Aug; 14(4):351-67. PubMed ID: 7917422
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aerobic uranium (VI) bioprecipitation by metal-resistant bacteria isolated from radionuclide- and metal-contaminated subsurface soils.
    Martinez RJ; Beazley MJ; Taillefert M; Arakaki AK; Skolnick J; Sobecky PA
    Environ Microbiol; 2007 Dec; 9(12):3122-33. PubMed ID: 17991039
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Uranium phosphate biomineralization by fungi.
    Liang X; Hillier S; Pendlowski H; Gray N; Ceci A; Gadd GM
    Environ Microbiol; 2015 Jun; 17(6):2064-75. PubMed ID: 25580878
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Uranium Biominerals Precipitated by an Environmental Isolate of Serratia under Anaerobic Conditions.
    Newsome L; Morris K; Lloyd JR
    PLoS One; 2015; 10(7):e0132392. PubMed ID: 26132209
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phosphate release and heavy metal accumulation by biofilm-immobilized and chemically-coupled cells of a Citrobacter sp. pre-grown in continuous culture.
    Finlay JA; Allan VJ; Conner A; Callow ME; Basnakova G; Macaskie LE
    Biotechnol Bioeng; 1999 Apr; 63(1):87-97. PubMed ID: 10099584
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biosorption and biomineralization of uranium(VI) by Saccharomyces cerevisiae-Crystal formation of chernikovite.
    Zheng XY; Wang XY; Shen YH; Lu X; Wang TS
    Chemosphere; 2017 May; 175():161-169. PubMed ID: 28211330
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of citrate as a complexing ligand which permits enzymically-mediated uranyl ion bioaccumulation.
    Yong P; Macaskie LE
    Bull Environ Contam Toxicol; 1995 Jun; 54(6):892-9. PubMed ID: 7647506
    [No Abstract]   [Full Text] [Related]  

  • 14. Phosphatase production and activity in Citrobacter freundii and a naturally occurring, heavy-metal-accumulating Citrobacter sp.
    Montgomery DM; Dean AC; Wiffen P; Macaskie LE
    Microbiology (Reading); 1995 Oct; 141 ( Pt 10)():2433-41. PubMed ID: 7582003
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Uranium bioprecipitation mediated by a phosphate-solubilizing Enterobacter sp. N1-10 and remediation of uranium-contaminated soil.
    Yu X; Xiong F; Zhou C; Luo Z; Zhou Z; Chen J; Sun K
    Sci Total Environ; 2024 Jan; 906():167688. PubMed ID: 37820798
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Uranyl precipitation by Pseudomonas aeruginosa via controlled polyphosphate metabolism.
    Renninger N; Knopp R; Nitsche H; Clark DS; Keasling JD
    Appl Environ Microbiol; 2004 Dec; 70(12):7404-12. PubMed ID: 15574942
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phosphate regulates uranium(VI) toxicity to Lemna gibba L. G3.
    Mkandawire M; Vogel K; Taubert B; Dudel EG
    Environ Toxicol; 2007 Feb; 22(1):9-16. PubMed ID: 17295276
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phosphatase-mediated heavy metal accumulation by a Citrobacter sp. and related enterobacteria.
    Macaskie LE; Bonthrone KM; Rouch DA
    FEMS Microbiol Lett; 1994 Aug; 121(2):141-6. PubMed ID: 7926662
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bioprecipitation of uranium from alkaline waste solutions using recombinant Deinococcus radiodurans.
    Kulkarni S; Ballal A; Apte SK
    J Hazard Mater; 2013 Nov; 262():853-61. PubMed ID: 24140537
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Decrease of U(VI) immobilization capability of the facultative anaerobic strain Paenibacillus sp. JG-TB8 under anoxic conditions due to strongly reduced phosphatase activity.
    Reitz T; Rossberg A; Barkleit A; Selenska-Pobell S; Merroun ML
    PLoS One; 2014; 9(8):e102447. PubMed ID: 25157416
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.