These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
233 related articles for article (PubMed ID: 10932096)
1. Breaking the COPI monopoly on Golgi recycling. Storrie B; Pepperkok R; Nilsson T Trends Cell Biol; 2000 Sep; 10(9):385-91. PubMed ID: 10932096 [TBL] [Abstract][Full Text] [Related]
2. Segregation of COPI-rich and anterograde-cargo-rich domains in endoplasmic-reticulum-to-Golgi transport complexes. Shima DT; Scales SJ; Kreis TE; Pepperkok R Curr Biol; 1999 Jul 29-Aug 12; 9(15):821-4. PubMed ID: 10469566 [TBL] [Abstract][Full Text] [Related]
3. COPI-coated ER-to-Golgi transport complexes segregate from COPII in close proximity to ER exit sites. Stephens DJ; Lin-Marq N; Pagano A; Pepperkok R; Paccaud JP J Cell Sci; 2000 Jun; 113 ( Pt 12)():2177-85. PubMed ID: 10825291 [TBL] [Abstract][Full Text] [Related]
4. Association of tapasin and COPI provides a mechanism for the retrograde transport of major histocompatibility complex (MHC) class I molecules from the Golgi complex to the endoplasmic reticulum. Paulsson KM; Kleijmeer MJ; Griffith J; Jevon M; Chen S; Anderson PO; Sjogren HO; Li S; Wang P J Biol Chem; 2002 May; 277(21):18266-71. PubMed ID: 11884415 [TBL] [Abstract][Full Text] [Related]
5. Ultrastructural characterization of endoplasmic reticulum--Golgi transport containers (EGTC). Horstmann H; Ng CP; Tang BL; Hong W J Cell Sci; 2002 Nov; 115(Pt 22):4263-73. PubMed ID: 12376558 [TBL] [Abstract][Full Text] [Related]
6. Transport between ER and Golgi. Klumperman J Curr Opin Cell Biol; 2000 Aug; 12(4):445-9. PubMed ID: 10873822 [TBL] [Abstract][Full Text] [Related]
7. A role for kinesin-2 in COPI-dependent recycling between the ER and the Golgi complex. Stauber T; Simpson JC; Pepperkok R; Vernos I Curr Biol; 2006 Nov; 16(22):2245-51. PubMed ID: 17113389 [TBL] [Abstract][Full Text] [Related]
8. Intracellular phospholipase A1gamma (iPLA1gamma) is a novel factor involved in coat protein complex I- and Rab6-independent retrograde transport between the endoplasmic reticulum and the Golgi complex. Morikawa RK; Aoki J; Kano F; Murata M; Yamamoto A; Tsujimoto M; Arai H J Biol Chem; 2009 Sep; 284(39):26620-30. PubMed ID: 19632984 [TBL] [Abstract][Full Text] [Related]
9. Evidence for a COP-I-independent transport route from the Golgi complex to the endoplasmic reticulum. Girod A; Storrie B; Simpson JC; Johannes L; Goud B; Roberts LM; Lord JM; Nilsson T; Pepperkok R Nat Cell Biol; 1999 Nov; 1(7):423-30. PubMed ID: 10559986 [TBL] [Abstract][Full Text] [Related]
10. Golgi-to-endoplasmic reticulum (ER) retrograde traffic in yeast requires Dsl1p, a component of the ER target site that interacts with a COPI coat subunit. Reilly BA; Kraynack BA; VanRheenen SM; Waters MG Mol Biol Cell; 2001 Dec; 12(12):3783-96. PubMed ID: 11739780 [TBL] [Abstract][Full Text] [Related]
11. In tobacco leaf epidermal cells, the integrity of protein export from the endoplasmic reticulum and of ER export sites depends on active COPI machinery. Stefano G; Renna L; Chatre L; Hanton SL; Moreau P; Hawes C; Brandizzi F Plant J; 2006 Apr; 46(1):95-110. PubMed ID: 16553898 [TBL] [Abstract][Full Text] [Related]
12. COPI is essential for Golgi cisternal maturation and dynamics. Ishii M; Suda Y; Kurokawa K; Nakano A J Cell Sci; 2016 Sep; 129(17):3251-61. PubMed ID: 27445311 [TBL] [Abstract][Full Text] [Related]
13. Evidence that the transport of ricin to the cytoplasm is independent of both Rab6A and COPI. Chen A; AbuJarour RJ; Draper RK J Cell Sci; 2003 Sep; 116(Pt 17):3503-10. PubMed ID: 12865434 [TBL] [Abstract][Full Text] [Related]
14. GBF1-Arf-COPI-ArfGAP-mediated Golgi-to-ER transport involved in regulation of lipid homeostasis. Takashima K; Saitoh A; Hirose S; Nakai W; Kondo Y; Takasu Y; Kakeya H; Shin HW; Nakayama K Cell Struct Funct; 2011; 36(2):223-35. PubMed ID: 22185782 [TBL] [Abstract][Full Text] [Related]
15. Yip1A regulates the COPI-independent retrograde transport from the Golgi complex to the ER. Kano F; Yamauchi S; Yoshida Y; Watanabe-Takahashi M; Nishikawa K; Nakamura N; Murata M J Cell Sci; 2009 Jul; 122(Pt 13):2218-27. PubMed ID: 19509059 [TBL] [Abstract][Full Text] [Related]
16. Diacylglycerol is required for the formation of COPI vesicles in the Golgi-to-ER transport pathway. Fernández-Ulibarri I; Vilella M; Lázaro-Diéguez F; Sarri E; Martínez SE; Jiménez N; Claro E; Mérida I; Burger KN; Egea G Mol Biol Cell; 2007 Sep; 18(9):3250-63. PubMed ID: 17567948 [TBL] [Abstract][Full Text] [Related]
17. Studying the Role of Lipid Geometry in COPI Vesicle Formation. Choi H; Park K; Hsu VW; Park SY Methods Mol Biol; 2023; 2557():519-528. PubMed ID: 36512234 [TBL] [Abstract][Full Text] [Related]
18. Phosphatidylinositol- and phosphatidylcholine-transfer activity of PITPbeta is essential for COPI-mediated retrograde transport from the Golgi to the endoplasmic reticulum. Carvou N; Holic R; Li M; Futter C; Skippen A; Cockcroft S J Cell Sci; 2010 Apr; 123(Pt 8):1262-73. PubMed ID: 20332109 [TBL] [Abstract][Full Text] [Related]
19. COPI-mediated retrograde trafficking from the Golgi to the ER regulates EGFR nuclear transport. Wang YN; Wang H; Yamaguchi H; Lee HJ; Lee HH; Hung MC Biochem Biophys Res Commun; 2010 Sep; 399(4):498-504. PubMed ID: 20674546 [TBL] [Abstract][Full Text] [Related]
20. Organization of the ER-Golgi interface for membrane traffic control. Brandizzi F; Barlowe C Nat Rev Mol Cell Biol; 2013 Jun; 14(6):382-92. PubMed ID: 23698585 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]