These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

374 related articles for article (PubMed ID: 10933071)

  • 1. Fluorescence spectroscopy of neoplastic and non-neoplastic tissues.
    Ramanujam N
    Neoplasia; 2000; 2(1-2):89-117. PubMed ID: 10933071
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Fluorescence spectroscopy and imaging for optical biopsy].
    Li BH; Xie SS
    Guang Pu Xue Yu Guang Pu Fen Xi; 2005 Jul; 25(7):1083-7. PubMed ID: 16241061
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vivo fluorescence imaging for tissue diagnostics.
    Andersson-Engels S; Klinteberg C; Svanberg K; Svanberg S
    Phys Med Biol; 1997 May; 42(5):815-24. PubMed ID: 9172261
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fluorescence lifetime techniques in medical applications.
    Marcu L
    Ann Biomed Eng; 2012 Feb; 40(2):304-31. PubMed ID: 22273730
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Light-induced fluorescence spectroscopy of adenomas, adenocarcinomas and non-neoplastic mucosa in human colon. I. In vitro measurements.
    Marchesini R; Brambilla M; Pignoli E; Bottiroli G; Croce AC; Dal Fante M; Spinelli P; di Palma S
    J Photochem Photobiol B; 1992 Jul; 14(3):219-30. PubMed ID: 1432391
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of fiber optic probe geometry on depth-resolved fluorescence measurements from epithelial tissues: a Monte Carlo simulation.
    Zhu C; Liu Q; Ramanujam N
    J Biomed Opt; 2003 Apr; 8(2):237-47. PubMed ID: 12683849
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular fluorescence excitation-emission matrices relevant to tissue spectroscopy.
    DaCosta RS; Andersson H; Wilson BC
    Photochem Photobiol; 2003 Oct; 78(4):384-92. PubMed ID: 14626667
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fluorescence excitation spectroscopy provides information about human skin in vivo.
    Gillies R; Zonios G; Anderson RR; Kollias N
    J Invest Dermatol; 2000 Oct; 115(4):704-7. PubMed ID: 10998147
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Luminescence lifetimes in biological systems.
    Phillips D
    Analyst; 1994 Apr; 119(4):543-50. PubMed ID: 8024118
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fluorescence and autofluorescence.
    Haringsma J; Tytgat GN
    Baillieres Best Pract Res Clin Gastroenterol; 1999 Apr; 13(1):1-10. PubMed ID: 11030629
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fluorescence spectroscopy and imaging to improve diagnosis of normal and tumoral cytological pancreatic cells.
    Atyaoui M; Dimassi W; Tounsi N; Jaidan NE; Ezzaouia H
    Pathol Res Pract; 2013 Jan; 209(1):1-5. PubMed ID: 23177616
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Clinical multi-colour fluorescence imaging of malignant tumours--initial experience.
    Svanberg K; Wang I; Colleen S; Idvall I; Ingvar C; Rydell R; Jocham D; Diddens H; Bown S; Gregory G; Montán S; Andersson-Engels S; Svanberg S
    Acta Radiol; 1998 Jan; 39(1):2-9. PubMed ID: 9498864
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fluorescence spectroscopy as a highly potential single-entity tool to identify chromophores and fluorophores: study on neoplastic human brain lesions.
    Nazeer SS; Saraswathy A; Gupta AK; Jayasree RS
    J Biomed Opt; 2013 Jun; 18(6):067002. PubMed ID: 23733026
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Native fluorescence spectra of human cancerous and normal breast tissues analyzed with non-negative constraint methods.
    Pu Y; Wang W; Yang Y; Alfano RR
    Appl Opt; 2013 Feb; 52(6):1293-301. PubMed ID: 23435002
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Detection of induced neoplastic lesions in the oral mucosa of hamsters using fluorescence spectroscopy].
    Silveira L; Paleckis LG; Nicolau RA; Nogueira GV; Busanello RZ; Mardegan DA; Fonseca SM; Zângaro RA; Pacheco MT
    Rev Assoc Med Bras (1992); 2004; 50(3):297-301. PubMed ID: 15499483
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Correction for tissue optical properties enables quantitative skin fluorescence measurements using multi-diameter single fiber reflectance spectroscopy.
    Middelburg TA; Hoy CL; Neumann HA; Amelink A; Robinson DJ
    J Dermatol Sci; 2015 Jul; 79(1):64-73. PubMed ID: 25911633
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Non-linear fluorescence lifetime imaging of biological tissues.
    Cicchi R; Pavone FS
    Anal Bioanal Chem; 2011 Jul; 400(9):2687-97. PubMed ID: 21455652
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimental evaluation of angularly variable fiber geometry for targeting depth-resolved reflectance from layered epithelial tissue phantoms.
    Wang A; Nammalavar V; Drezek R
    J Biomed Opt; 2007; 12(4):044011. PubMed ID: 17867815
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fluorescence polarization spectroscopy and time-resolved fluorescence kinetics of native cancerous and normal rat kidney tissues.
    Tata DB; Foresti M; Cordero J; Tomashefsky P; Alfano MA; Alfano RR
    Biophys J; 1986 Sep; 50(3):463-9. PubMed ID: 3489490
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A technique for correction of attenuations in synchronous fluorescence spectroscopy.
    Devi S; Ghosh N; Pradhan A
    J Photochem Photobiol B; 2015 Oct; 151():1-9. PubMed ID: 26134713
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.