These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 10933233)

  • 1. Lateral spike conduction velocity in the visual cortex affects spatial range of synchronization and receptive field size without visual experience: a learning model with spiking neurons.
    Saam M; Eckhorn R
    Biol Cybern; 2000 Jul; 83(1):L1-9. PubMed ID: 10933233
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 'Top-down' influences of ipsilateral or contralateral postero-temporal visual cortices on the extra-classical receptive fields of neurons in cat's striate cortex.
    Bardy C; Huang JY; Wang C; Fitzgibbon T; Dreher B
    Neuroscience; 2009 Jan; 158(2):951-68. PubMed ID: 18976693
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Contribution of feedforward, lateral and feedback connections to the classical receptive field center and extra-classical receptive field surround of primate V1 neurons.
    Angelucci A; Bressloff PC
    Prog Brain Res; 2006; 154():93-120. PubMed ID: 17010705
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neural mechanisms of visual feature grouping.
    Eckhorn R
    Neurol Neurochir Pol; 2000; 34(2 Suppl):27-42. PubMed ID: 10962735
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spatial dynamics of receptive fields in cat primary visual cortex related to the temporal structure of thalamocortical feedforward activity. Experiments and models.
    Suder K; Funke K; Zhao Y; Kerscher N; Wennekers T; Wörgötter F
    Exp Brain Res; 2002 Jun; 144(4):430-44. PubMed ID: 12037629
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Replicating receptive fields of simple and complex cells in primary visual cortex in a neuronal network model with temporal and population sparseness and reliability.
    Tanaka T; Aoyagi T; Kaneko T
    Neural Comput; 2012 Oct; 24(10):2700-25. PubMed ID: 22845820
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combined Hebbian development of geniculocortical and lateral connectivity in a model of primary visual cortex.
    Bartsch AP; van Hemmen JL
    Biol Cybern; 2001 Jan; 84(1):41-55. PubMed ID: 11204398
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Orientation tuning of surround suppression in lateral geniculate nucleus and primary visual cortex of cat.
    Naito T; Sadakane O; Okamoto M; Sato H
    Neuroscience; 2007 Nov; 149(4):962-75. PubMed ID: 17945429
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The contribution of vertical and horizontal connections to the receptive field center and surround in V1.
    Chisum HJ; Fitzpatrick D
    Neural Netw; 2004; 17(5-6):681-93. PubMed ID: 15288892
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Circuits for local and global signal integration in primary visual cortex.
    Angelucci A; Levitt JB; Walton EJ; Hupe JM; Bullier J; Lund JS
    J Neurosci; 2002 Oct; 22(19):8633-46. PubMed ID: 12351737
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Temporal properties of spatial frequency tuning of surround suppression in the primary visual cortex and the lateral geniculate nucleus of the cat.
    Ishikawa A; Shimegi S; Kida H; Sato H
    Eur J Neurosci; 2010 Jun; 31(11):2086-100. PubMed ID: 20604803
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inferring spike trains from local field potentials.
    Rasch MJ; Gretton A; Murayama Y; Maass W; Logothetis NK
    J Neurophysiol; 2008 Mar; 99(3):1461-76. PubMed ID: 18160425
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pattern separation and synchronization in spiking associative memories and visual areas.
    Knoblauch A; Palm G
    Neural Netw; 2001; 14(6-7):763-80. PubMed ID: 11665769
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Selective stimulation of neurons in visual cortex enables segregation of slow and fast connections.
    Kim T; Freeman RD
    Neuroscience; 2014 Aug; 274():170-86. PubMed ID: 24881577
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cross-correlation study of the temporal interactions between areas V1 and V2 of the macaque monkey.
    Nowak LG; Munk MH; James AC; Girard P; Bullier J
    J Neurophysiol; 1999 Mar; 81(3):1057-74. PubMed ID: 10085333
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unbiased and robust quantification of synchronization between spikes and local field potential.
    Li Z; Cui D; Li X
    J Neurosci Methods; 2016 Aug; 269():33-8. PubMed ID: 27180930
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microsaccade-rhythmic modulation of neural synchronization and coding within and across cortical areas V1 and V2.
    Lowet E; Gips B; Roberts MJ; De Weerd P; Jensen O; van der Eerden J
    PLoS Biol; 2018 May; 16(5):e2004132. PubMed ID: 29851960
    [TBL] [Abstract][Full Text] [Related]  

  • 18. State-dependent receptive-field restructuring in the visual cortex.
    Wörgötter F; Suder K; Zhao Y; Kerscher N; Eysel UT; Funke K
    Nature; 1998 Nov; 396(6707):165-8. PubMed ID: 9823895
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of 'feedback' signals on spatial integration in receptive fields of cat area 17 neurons.
    Wang C; Huang JY; Bardy C; FitzGibbon T; Dreher B
    Brain Res; 2010 Apr; 1328():34-48. PubMed ID: 20206150
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Natural image sequences constrain dynamic receptive fields and imply a sparse code.
    Häusler C; Susemihl A; Nawrot MP
    Brain Res; 2013 Nov; 1536():53-67. PubMed ID: 23933349
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.