BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 10933500)

  • 21. New insight into the pH-dependent conformational changes in bovine beta-lactoglobulin from Raman optical activity.
    Blanch EW; Hecht L; Barron LD
    Protein Sci; 1999 Jun; 8(6):1362-7. PubMed ID: 10386887
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Molecular simulations of β-lactoglobulin complexed with fatty acids reveal the structural basis of ligand affinity to internal and possible external binding sites.
    Evoli S; Guzzi R; Rizzuti B
    Proteins; 2014 Oct; 82(10):2609-19. PubMed ID: 24916607
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Deuterium kinetic isotope effects on the dissociation of a protein-fatty acid complex in the gas phase.
    Liu L; Michelsen K; Kitova EN; Schnier PD; Brown A; Klassen JS
    J Am Chem Soc; 2012 Apr; 134(13):5931-7. PubMed ID: 22409493
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Electrospray mass spectrometric investigation of the binding of cis-parinaric acid to bovine beta-lactoglobulin and study of the ligand-binding site of the protein using limited proteolysis.
    Imre T; Zsila F; Szabó PT
    Rapid Commun Mass Spectrom; 2003; 17(22):2464-70. PubMed ID: 14608614
    [TBL] [Abstract][Full Text] [Related]  

  • 25. trans-Parinaric acid as a versatile spectroscopic label to study ligand binding properties of bovine beta-lactoglobulin.
    Zsila F; Bikádi Z
    Spectrochim Acta A Mol Biomol Spectrosc; 2005 Nov; 62(1-3):666-72. PubMed ID: 15893954
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fibrillar beta-lactoglobulin gels: Part 1. Fibril formation and structure.
    Gosal WS; Clark AH; Ross-Murphy SB
    Biomacromolecules; 2004; 5(6):2408-19. PubMed ID: 15530058
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Isotopically labeled bovine beta-lactoglobulin for NMR studies expressed in Pichia pastoris.
    Denton H; Smith M; Husi H; Uhrin D; Barlow PN; Batt CA; Sawyer L
    Protein Expr Purif; 1998 Oct; 14(1):97-103. PubMed ID: 9758756
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Structural basis of the Tanford transition of bovine beta-lactoglobulin.
    Qin BY; Bewley MC; Creamer LK; Baker HM; Baker EN; Jameson GB
    Biochemistry; 1998 Oct; 37(40):14014-23. PubMed ID: 9760236
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Porcine beta-lactoglobulin chemical unfolding: identification of a non-native alpha-helical intermediate.
    D'Alfonso L; Collini M; Ragona L; Ugolini R; Baldini G; Molinari H
    Proteins; 2005 Jan; 58(1):70-9. PubMed ID: 15526300
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ligand entry into the calyx of β-lactoglobulin.
    Bello M; García-Hernández E
    Biopolymers; 2014 Jul; 101(7):744-57. PubMed ID: 24865819
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Monitoring the Tanford transition in beta-lactoglobulin by 8-anilino-1-naphthalene sulfonate and mass spectrometry.
    Santambrogio C; Grandori R
    Rapid Commun Mass Spectrom; 2008 Dec; 22(24):4049-54. PubMed ID: 19016256
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The structure of beta-lactoglobulin and its similarity to plasma retinol-binding protein.
    Papiz MZ; Sawyer L; Eliopoulos EE; North AC; Findlay JB; Sivaprasadarao R; Jones TA; Newcomer ME; Kraulis PJ
    Nature; 1986 Nov 27-Dec 3; 324(6095):383-5. PubMed ID: 3785406
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Lipid-induced conformational transitions of beta-lactoglobulin.
    Zhang X; Keiderling TA
    Biochemistry; 2006 Jul; 45(27):8444-52. PubMed ID: 16819842
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Structural mechanism of the Tanford transition of bovine β-lactoglobulin through microsecond molecular dynamics simulations.
    Bello M
    J Biomol Struct Dyn; 2022 Apr; 40(7):3011-3023. PubMed ID: 33155532
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Elucidation of the binding sites of sodium dodecyl sulfate to β-lactoglobulin using hydrogen/deuterium exchange mass spectrometry combined with docking simulation.
    Hu W; Liu J; Luo Q; Han Y; Wu K; Lv S; Xiong S; Wang F
    Rapid Commun Mass Spectrom; 2011 May; 25(10):1429-36. PubMed ID: 21504009
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Binding of 18-carbon unsaturated fatty acids to bovine β-lactoglobulin--structural and thermodynamic studies.
    Loch JI; Bonarek P; Polit A; Riès D; Dziedzicka-Wasylewska M; Lewiński K
    Int J Biol Macromol; 2013 Jun; 57():226-31. PubMed ID: 23500663
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of thermal treatment, ionic strength, and pH on the short-term and long-term coalescence stability of beta-lactoglobulin emulsions.
    Tcholakova S; Denkov ND; Sidzhakova D; Campbell B
    Langmuir; 2006 Jul; 22(14):6042-52. PubMed ID: 16800657
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Reorganization in apo- and holo-beta-lactoglobulin upon protonation of Glu89: molecular dynamics and pKa calculations.
    Eberini I; Baptista AM; Gianazza E; Fraternali F; Beringhelli T
    Proteins; 2004 Mar; 54(4):744-58. PubMed ID: 14997570
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Structure of bovine beta-lactoglobulin (variant A) at very low ionic strength.
    Adams JJ; Anderson BF; Norris GE; Creamer LK; Jameson GB
    J Struct Biol; 2006 Jun; 154(3):246-54. PubMed ID: 16540345
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Binding of phenolic compounds and their derivatives to bovine and reindeer beta-lactoglobulin.
    Riihimäki LH; Vainio MJ; Heikura JM; Valkonen KH; Virtanen VT; Vuorela PM
    J Agric Food Chem; 2008 Sep; 56(17):7721-9. PubMed ID: 18700775
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.