BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

279 related articles for article (PubMed ID: 10933508)

  • 1. Structural effects of the active site mutation cysteine to serine in Bacillus cereus zinc-beta-lactamase.
    Chantalat L; Duée E; Galleni M; Frère JM; Dideberg O
    Protein Sci; 2000 Jul; 9(7):1402-6. PubMed ID: 10933508
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crystal structure of the zinc-dependent beta-lactamase from Bacillus cereus at 1.9 A resolution: binuclear active site with features of a mononuclear enzyme.
    Fabiane SM; Sohi MK; Wan T; Payne DJ; Bateson JH; Mitchell T; Sutton BJ
    Biochemistry; 1998 Sep; 37(36):12404-11. PubMed ID: 9730812
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of pH on the active site of an Arg121Cys mutant of the metallo-beta-lactamase from Bacillus cereus: implications for the enzyme mechanism.
    Davies AM; Rasia RM; Vila AJ; Sutton BJ; Fabiane SM
    Biochemistry; 2005 Mar; 44(12):4841-9. PubMed ID: 15779910
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural determinants and hydrogen-bond network of the mononuclear zinc(II)-beta-lactamase active site.
    Dal Peraro M; Vila AJ; Carloni P
    J Biol Inorg Chem; 2002 Sep; 7(7-8):704-12. PubMed ID: 12203007
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metal content and localization during turnover in B. cereus metallo-beta-lactamase.
    Llarrull LI; Tioni MF; Vila AJ
    J Am Chem Soc; 2008 Nov; 130(47):15842-51. PubMed ID: 18980306
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural consequences of the active site substitution Cys181 ==> Ser in metallo-beta-lactamase from Bacteroides fragilis.
    Li Z; Rasmussen BA; Herzberg O
    Protein Sci; 1999 Jan; 8(1):249-52. PubMed ID: 10210203
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Positively cooperative binding of zinc ions to Bacillus cereus 569/H/9 beta-lactamase II suggests that the binuclear enzyme is the only relevant form for catalysis.
    Jacquin O; Balbeur D; Damblon C; Marchot P; De Pauw E; Roberts GC; Frère JM; Matagne A
    J Mol Biol; 2009 Oct; 392(5):1278-91. PubMed ID: 19665032
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metallo-beta-lactamases (classification, activity, genetic organization, structure, zinc coordination) and their superfamily.
    Bebrone C
    Biochem Pharmacol; 2007 Dec; 74(12):1686-701. PubMed ID: 17597585
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evidence of adaptability in metal coordination geometry and active-site loop conformation among B1 metallo-beta-lactamases .
    González JM; Buschiazzo A; Vila AJ
    Biochemistry; 2010 Sep; 49(36):7930-8. PubMed ID: 20677753
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enzyme deactivation due to metal-ion dissociation during turnover of the cobalt-beta-lactamase catalyzed hydrolysis of beta-lactams.
    Badarau A; Page MI
    Biochemistry; 2006 Sep; 45(36):11012-20. PubMed ID: 16953588
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Substrate binding to mononuclear metallo-beta-lactamase from Bacillus cereus.
    Dal Peraro M; Vila AJ; Carloni P
    Proteins; 2004 Feb; 54(3):412-23. PubMed ID: 14747990
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Zn2 position in metallo-beta-lactamases is critical for activity: a study on chimeric metal sites on a conserved protein scaffold.
    González JM; Medrano Martín FJ; Costello AL; Tierney DL; Vila AJ
    J Mol Biol; 2007 Nov; 373(5):1141-56. PubMed ID: 17915249
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fluorescein-labeled beta-lactamase mutant for high-throughput screening of bacterial beta-lactamases against beta-lactam antibiotics.
    Chan PH; Chan KC; Liu HB; Chung WH; Leung YC; Wong KY
    Anal Chem; 2005 Aug; 77(16):5268-76. PubMed ID: 16097768
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structure of the wild-type TEM-1 beta-lactamase at 1.55 A and the mutant enzyme Ser70Ala at 2.1 A suggest the mode of noncovalent catalysis for the mutant enzyme.
    Stec B; Holtz KM; Wojciechowski CL; Kantrowitz ER
    Acta Crystallogr D Biol Crystallogr; 2005 Aug; 61(Pt 8):1072-9. PubMed ID: 16041072
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The variation of catalytic efficiency of Bacillus cereus metallo-beta-lactamase with different active site metal ions.
    Badarau A; Page MI
    Biochemistry; 2006 Sep; 45(35):10654-66. PubMed ID: 16939217
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular dynamics simulations of the mononuclear zinc-beta-lactamase from Bacillus cereus.
    Suárez D; Merz KM
    J Am Chem Soc; 2001 Apr; 123(16):3759-70. PubMed ID: 11457108
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydroxyl groups in the betabeta sandwich of metallo-beta-lactamases favor enzyme activity: Tyr218 and Ser262 pull down the lid.
    Oelschlaeger P; Pleiss J
    J Mol Biol; 2007 Feb; 366(1):316-29. PubMed ID: 17157873
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An evolutionary classification of the metallo-beta-lactamase fold proteins.
    Aravind L
    In Silico Biol; 1999; 1(2):69-91. PubMed ID: 11471246
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Water-assisted reaction mechanism of monozinc beta-lactamases.
    Dal Peraro M; Llarrull LI; Rothlisberger U; Vila AJ; Carloni P
    J Am Chem Soc; 2004 Oct; 126(39):12661-8. PubMed ID: 15453800
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crystal structures of the cadmium- and mercury-substituted metallo-beta-lactamase from Bacteroides fragilis.
    Concha NO; Rasmussen BA; Bush K; Herzberg O
    Protein Sci; 1997 Dec; 6(12):2671-6. PubMed ID: 9416622
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.