BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 10933831)

  • 1. Reactivity of 3-HBA-6-hydroxylase with diethylpyrocarbonate and N-bromosuccinimide: effect of chemical modifications on kinetic and spectral properties of the enzyme.
    Sumathi S; Dasgupta D
    Biotechnol Prog; 2000; 16(4):577-82. PubMed ID: 10933831
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetics of inactivation of Penaeus penicillatus acid phosphatase during inhibition by N-bromosuccinimide.
    Yang PZ; Chen QX; Li Y; Chen SL; Zhou HM
    Biochem Mol Biol Int; 1998 Aug; 45(5):953-62. PubMed ID: 9739460
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inactivation of leucine aminotransferase with diethylpyrocarbonate and rose bengal: evidence for an active site histidine residue.
    Pathre U; Singh AK; Sane PV
    Indian J Biochem Biophys; 1989 Jun; 26(3):136-9. PubMed ID: 2620908
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interaction of 3-hydroxybenzoate with 3-hydroxybenzoate-6-hydroxylase.
    Sumathi Suresh S; Dasgupta D
    Biotechnol Prog; 2001; 17(6):1026-31. PubMed ID: 11735436
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chemical modification of 3-HBA-6-hydroxylase by phenylglyoxal: kinetic and physicochemical studies on the modified enzyme.
    Sumathi S; Dasgupta D; Vaidyanathan CS
    Indian J Biochem Biophys; 1998 Oct; 35(5):266-72. PubMed ID: 10410459
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chemical modification of histidine residue in substrate-binding domain of carbonyl reductase from rabbit kidney.
    Imamura Y; Higuchi T; Otagiri M
    Biochem Mol Biol Int; 1993 Dec; 31(6):1105-10. PubMed ID: 8193594
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chemical modification of histidine, tyrosine, tryptophan and cysteine residues in carp (Cyprinus carpio) muscle enolase.
    Pietkiewicz J; Kustrzeba-Wójcicka I; Wolna E; Wolny M
    Biochem Int; 1987 May; 14(5):805-14. PubMed ID: 3454643
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of denaturants on the structure and activity of 3-hydroxybenzoate-6-hydroxylase.
    Sumathi S; Dasgupta D
    Indian J Biochem Biophys; 2006 Jun; 43(3):148-53. PubMed ID: 16967903
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chemical modification of dipeptidyl peptidase iv: involvement of an essential tryptophan residue at the substrate binding site.
    Harada M; Hiraoka BY; Fukasawa KM; Fukasawa K
    Arch Biochem Biophys; 1984 Nov; 234(2):622-8. PubMed ID: 6149728
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of amino acid residues at the active site of human liver serine hydroxymethyltransferase.
    Vijayalakshmi D; Rao NA
    Biochem Int; 1989 Sep; 19(3):625-32. PubMed ID: 2818613
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A histidine residue in p-hydroxybenzoate hydroxylase essential for binding of reduced nicotinamide adenine dinucleotide phosphate.
    Shoun H; Beppu T
    J Biol Chem; 1982 Apr; 257(7):3422-8. PubMed ID: 7061489
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modification and modificatory kinetics of the active center of prawn beta-N-acetyl-D-glucosaminidase.
    Xie XL; Huang QS; Wang Y; Ke CH; Chen QX
    J Biomol Struct Dyn; 2009 Jun; 26(6):781-6. PubMed ID: 19385706
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enzyme catalysed non-oxidative decarboxylation of aromatic acids. II. Identification of active site residues of 2,3-dihydroxybenzoic acid decarboxylase from Aspergillus niger.
    Kamath AV; Rao NA; Vaidyanathan CS
    Biochem Biophys Res Commun; 1989 Nov; 165(1):20-6. PubMed ID: 2590221
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Binding residues and catalytic domain of soluble Saccharomyces cerevisiae processing alpha-glucosidase I.
    Faridmoayer A; Scaman CH
    Glycobiology; 2005 Dec; 15(12):1341-8. PubMed ID: 16014748
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An essential arginine residue at the substrate binding site of 4-hydroxyisophthalate hydroxylase.
    Haribabu B; Rao NA; Vaidyanathan CS
    Biochem Int; 1985 Dec; 11(6):773-80. PubMed ID: 4091852
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Role of tryptophan in the enzymatic activity of histidine decarboxylase from Micrococcus sp. n].
    Gonchar NA; Grebenshchikova OG; Komarova NV
    Biokhimiia; 1981 Nov; 46(11):1970-80. PubMed ID: 7317525
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chemical modification of the bifunctional human serum pseudocholinesterase. Effect on the pseudocholinesterase and aryl acylamidase activities.
    Boopathy R; Balasubramanian AS
    Eur J Biochem; 1985 Sep; 151(2):351-60. PubMed ID: 2863142
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Discrimination between the four tryptophan residues of MM-creatine kinase on the basis of the effect of N-bromosuccinimide on activity and spectral properties.
    Clottes E; Vial C
    Arch Biochem Biophys; 1996 May; 329(1):97-103. PubMed ID: 8619641
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of tryptophan, histidine and methionine residues in the catalytic activity of mitochondrial aspartate aminotransferase from beef kidney.
    Polidoro G; di Cola D; di Ilio C; del Boccio G; Politi L; Scandurra R
    Physiol Chem Phys; 1975; 7(3):255-61. PubMed ID: 1187815
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chemical modification of tyrosine residues in p-hydroxybenzoate hydroxylase from Pseudomonas fluorescens: assignment in sequence and catalytic involvement.
    Wijnands RA; Weijer WJ; Müller F; Jekel PA; van Berkel WJ; Beintema JJ
    Biochemistry; 1986 Jul; 25(15):4211-8. PubMed ID: 3092854
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.