These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 10933853)

  • 1. Flow cytometry-based biosensor for detection of multivalent proteins.
    Song X; Shi J; Swanson B
    Anal Biochem; 2000 Aug; 284(1):35-41. PubMed ID: 10933853
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Detection of multivalent interactions through two-tiered energy transfer.
    Song X; Shi J; Nolan J; Swanson B
    Anal Biochem; 2001 Apr; 291(1):133-41. PubMed ID: 11262166
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct, ultrasensitive, and selective optical detection of protein toxins using multivalent interactions.
    Song X; Swanson BI
    Anal Chem; 1999 Jun; 71(11):2097-107. PubMed ID: 10366891
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Manipulating FRET with polymeric vesicles: development of a "mix-and-detect" type fluorescence sensor for bacterial toxin.
    Ma G; Cheng Q
    Langmuir; 2006 Aug; 22(16):6743-5. PubMed ID: 16863214
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An ultrasensitive chemiluminescence biosensor for cholera toxin based on ganglioside-functionalized supported lipid membrane and liposome.
    Chen H; Zheng Y; Jiang JH; Wu HL; Shen GL; Yu RQ
    Biosens Bioelectron; 2008 Dec; 24(4):684-9. PubMed ID: 18672355
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct fluorescence-based detection methods for multivalent interactions.
    Song X; Shi J; Swanson BI
    Methods Enzymol; 2003; 362():523-42. PubMed ID: 12968386
    [No Abstract]   [Full Text] [Related]  

  • 7. Application of ganglioside-sensitized liposomes in a flow injection immunoanalytical system for the determination of cholera toxin.
    Ho JA; Wu LC; Huang MR; Lin YJ; Baeumner AJ; Durst RA
    Anal Chem; 2007 Jan; 79(1):246-50. PubMed ID: 17194147
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Superquenching as a detector for microsphere-based flow cytometric assays.
    Zeineldin R; Piyasena ME; Bergstedt TS; Sklar LA; Whitten D; Lopez GP
    Cytometry A; 2006 May; 69(5):335-41. PubMed ID: 16604535
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanodiscs for immobilization of lipid bilayers and membrane receptors: kinetic analysis of cholera toxin binding to a glycolipid receptor.
    Borch J; Torta F; Sligar SG; Roepstorff P
    Anal Chem; 2008 Aug; 80(16):6245-52. PubMed ID: 18616345
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A flow cytometric method to detect protein-protein interaction in living cells by directly visualizing donor fluorophore quenching during CFP-->YFP fluorescence resonance energy transfer (FRET).
    He L; Olson DP; Wu X; Karpova TS; McNally JG; Lipsky PE
    Cytometry A; 2003 Oct; 55(2):71-85. PubMed ID: 14505312
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Flow cytometric measurement of fluorescence (Förster) resonance energy transfer from cyan fluorescent protein to yellow fluorescent protein using single-laser excitation at 458 nm.
    He L; Bradrick TD; Karpova TS; Wu X; Fox MH; Fischer R; McNally JG; Knutson JR; Grammer AC; Lipsky PE
    Cytometry A; 2003 May; 53(1):39-54. PubMed ID: 12701131
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A ganglioside-based assay for cholera toxin using an array biosensor.
    Rowe-Taitt CA; Cras JJ; Patterson CH; Golden JP; Ligler FS
    Anal Biochem; 2000 May; 281(1):123-33. PubMed ID: 10847619
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Peptides, antibodies, and FRET on beads in flow cytometry: A model system using fluoresceinated and biotinylated beta-endorphin.
    Buranda T; Lopez GP; Keij J; Harris R; Sklar LA
    Cytometry; 1999 Sep; 37(1):21-31. PubMed ID: 10451503
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fluorescent BODIPY-labelled GM1 gangliosides designed for exploring lipid membrane properties and specific membrane-target interactions.
    Mikhalyov I; Gretskaya N; Johansson LB
    Chem Phys Lipids; 2009 May; 159(1):38-44. PubMed ID: 19428361
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Single nanoparticle tracking-based detection of membrane receptor-ligand interactions.
    Yang YH; Nam JM
    Anal Chem; 2009 Apr; 81(7):2564-8. PubMed ID: 19228043
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fluorescently labeled liposomes for monitoring cholera toxin binding to epithelial cells.
    Edwards KA; Duan F; Baeumner AJ; March JC
    Anal Biochem; 2008 Sep; 380(1):59-67. PubMed ID: 18549803
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interaction of pyrene-labeled monosialoganglioside GM1 micelles with cholera toxin.
    Picking WD
    Biochem Biophys Res Commun; 1993 Sep; 195(3):1153-8. PubMed ID: 8216243
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detection of epitope-tagged proteins in flow cytometry: fluorescence resonance energy transfer-based assays on beads with femtomole resolution.
    Buranda T; Lopez GP; Simons P; Pastuszyn A; Sklar LA
    Anal Biochem; 2001 Nov; 298(2):151-62. PubMed ID: 11700971
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stable and fluid ethylphosphocholine membranes in a poly(dimethylsiloxane) microsensor for toxin detection in flooded waters.
    Phillips KS; Dong Y; Carter D; Cheng Q
    Anal Chem; 2005 May; 77(9):2960-5. PubMed ID: 15859616
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detection of membrane-binding proteins by surface plasmon resonance with an all-aqueous amplification scheme.
    Liu Y; Cheng Q
    Anal Chem; 2012 Apr; 84(7):3179-86. PubMed ID: 22439623
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.