These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 10934017)

  • 1. CHORIPETALA and DESPENTEADO: general regulators during plant development and potential floral targets of FIMBRIATA-mediated degradation.
    Wilkinson M; de Andrade Silva E; Zachgo S; Saedler H; Schwarz-Sommer Z
    Development; 2000 Sep; 127(17):3725-34. PubMed ID: 10934017
    [TBL] [Abstract][Full Text] [Related]  

  • 2. STYLOSA and FISTULATA: regulatory components of the homeotic control of Antirrhinum floral organogenesis.
    Motte P; Saedler H; Schwarz-Sommer Z
    Development; 1998 Jan; 125(1):71-84. PubMed ID: 9389665
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dual role for fimbriata in regulating floral homeotic genes and cell division in Antirrhinum.
    Ingram GC; Doyle S; Carpenter R; Schultz EA; Simon R; Coen ES
    EMBO J; 1997 Nov; 16(21):6521-34. PubMed ID: 9351833
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The duplicated B-class heterodimer model: whorl-specific effects and complex genetic interactions in Petunia hybrida flower development.
    Vandenbussche M; Zethof J; Royaert S; Weterings K; Gerats T
    Plant Cell; 2004 Mar; 16(3):741-54. PubMed ID: 14973163
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The gene fimbriata interacts non-cell autonomously with floral regulatory genes.
    Schultz E; Carpenter R; Doyle S; Coen E
    Plant J; 2001 Mar; 25(5):499-507. PubMed ID: 11309140
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The whorl-specific action of a petunia class B floral homeotic gene.
    Tsuchimoto S; Mayama T; van der Krol A; Ohtsubo E
    Genes Cells; 2000 Feb; 5(2):89-99. PubMed ID: 10672040
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PLENA and FARINELLI: redundancy and regulatory interactions between two Antirrhinum MADS-box factors controlling flower development.
    Davies B; Motte P; Keck E; Saedler H; Sommer H; Schwarz-Sommer Z
    EMBO J; 1999 Jul; 18(14):4023-34. PubMed ID: 10406807
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Epidermal control of floral organ identity by class B homeotic genes in Antirrhinum and Arabidopsis.
    Efremova N; Perbal MC; Yephremov A; Hofmann WA; Saedler H; Schwarz-Sommer Z
    Development; 2001 Jul; 128(14):2661-71. PubMed ID: 11526073
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The modified ABC model explains the development of the petaloid perianth of Agapanthus praecox ssp. orientalis (Agapanthaceae) flowers.
    Nakamura T; Fukuda T; Nakano M; Hasebe M; Kameya T; Kanno A
    Plant Mol Biol; 2005 Jun; 58(3):435-45. PubMed ID: 16021405
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fimbriata controls flower development by mediating between meristem and organ identity genes.
    Simon R; Carpenter R; Doyle S; Coen E
    Cell; 1994 Jul; 78(1):99-107. PubMed ID: 8033217
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional and evolutionary analysis of the AP1/SEP/AGL6 superclade of MADS-box genes in the basal eudicot Epimedium sagittatum.
    Sun W; Huang W; Li Z; Song C; Liu D; Liu Y; Hayward A; Liu Y; Huang H; Wang Y
    Ann Bot; 2014 Mar; 113(4):653-68. PubMed ID: 24532606
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Floral homeotic mutations produced by transposon-mutagenesis in Antirrhinum majus.
    Carpenter R; Coen ES
    Genes Dev; 1990 Sep; 4(9):1483-93. PubMed ID: 1979295
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genetic interaction of OsMADS3, DROOPING LEAF, and OsMADS13 in specifying rice floral organ identities and meristem determinacy.
    Li H; Liang W; Yin C; Zhu L; Zhang D
    Plant Physiol; 2011 May; 156(1):263-74. PubMed ID: 21444646
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of class B and class C floral organ identity genes from rice plants.
    Kang HG; Jeon JS; Lee S; An G
    Plant Mol Biol; 1998 Dec; 38(6):1021-9. PubMed ID: 9869408
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deep into the Aristolochia Flower: Expression of C, D, and E-Class Genes in Aristolochia fimbriata (Aristolochiaceae).
    Suárez-Baron H; Pérez-Mesa P; Ambrose BA; González F; Pabón-Mora N
    J Exp Zool B Mol Dev Evol; 2017 Jan; 328(1-2):55-71. PubMed ID: 27507740
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evolution of petaloid sepals independent of shifts in B-class MADS box gene expression.
    Landis JB; Barnett LL; Hileman LC
    Dev Genes Evol; 2012 Mar; 222(1):19-28. PubMed ID: 22198545
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A LEAFY co-regulator encoded by UNUSUAL FLORAL ORGANS.
    Lee I; Wolfe DS; Nilsson O; Weigel D
    Curr Biol; 1997 Feb; 7(2):95-104. PubMed ID: 9016705
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genetic complementation of a floral homeotic mutation, apetala3, with an Arabidopsis thaliana gene homologous to DEFICIENS of Antirrhinum majus.
    Okamoto H; Yano A; Shiraishi H; Okada K; Shimura Y
    Plant Mol Biol; 1994 Oct; 26(1):465-72. PubMed ID: 7948893
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Maize PI/GLO Ortholog Zmm16/sterile tassel silky ear1 Interacts with the Zygomorphy and Sex Determination Pathways in Flower Development.
    Bartlett ME; Williams SK; Taylor Z; DeBlasio S; Goldshmidt A; Hall DH; Schmidt RJ; Jackson DP; Whipple CJ
    Plant Cell; 2015 Nov; 27(11):3081-98. PubMed ID: 26518212
    [TBL] [Abstract][Full Text] [Related]  

  • 20. AINTEGUMENTA promotes petal identity and acts as a negative regulator of AGAMOUS.
    Krizek BA; Prost V; Macias A
    Plant Cell; 2000 Aug; 12(8):1357-66. PubMed ID: 10948255
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.